scholarly journals Super-Chern-Simons spectra from exceptional field theory

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Oscar Varela

Abstract Exceptional Field Theory has been recently shown to be very powerful to compute Kaluza-Klein spectra. Using these techniques, the mass matrix of Kaluza-Klein vector perturbations about a specific class of AdS4 solutions of D = 11 and massive type IIA supergravity is determined. These results are then employed to characterise the complete supersymmetric spectrum about some notable $$ \mathcal{N} $$ N = 2 and $$ \mathcal{N} $$ N = 3 AdS4 solutions in this class, which are dual to specific three-dimensional superconformal Chern-Simons field theories.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Pietro Benetti Genolini ◽  
Matan Grinberg ◽  
Paul Richmond

Abstract We revisit the construction in four-dimensional gauged Spin(4) supergravity of the holographic duals to topologically twisted three-dimensional $$ \mathcal{N} $$ N = 4 field theories. Our focus in this paper is to highlight some subtleties related to preserving supersymmetry in AdS/CFT, namely the inclusion of finite counterterms and the necessity of a Legendre transformation to find the dual to the field theory generating functional. Studying the geometry of these supergravity solutions, we conclude that the gravitational free energy is indeed independent from the metric of the boundary, and it vanishes for any smooth solution.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


1990 ◽  
Vol 05 (05) ◽  
pp. 959-988 ◽  
Author(s):  
MICHIEL BOS ◽  
V.P. NAIR

Three-dimensional Chern-Simons gauge theories are quantized in a functional coherent state formalism. The connection with two-dimensional conformal field theory is found to emerge naturally. The normalized wave functionals are identified as generating functionals for the chiral blocks of two-dimensional current algebra.


1994 ◽  
Vol 09 (01) ◽  
pp. 1-37 ◽  
Author(s):  
YU. P. GONCHAROV

This survey is devoted to possible manifestations of remarkable topological duality between real scalar and spinor fields (TDSS) existing on a great number of manifolds important in physical applications. The given manifestations are demonstrated to occur within the framework of miscellaneous branches in ordinary and supersymmetric quantum field theories, supergravity, Kaluza-Klein type theories, cosmology, strings, membranes and p-branes. All this allows one to draw the condusion that the above duality will seem to be an essential ingredient in many questions of present and future investigations.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Clay Cordova ◽  
Po-Shen Hsin ◽  
Kantaro Ohmori

We use conformal embeddings involving exceptional affine Kac-Moody algebras to derive new dualities of three-dimensional topological field theories. These generalize the familiar level-rank duality of Chern-Simons theories based on classical gauge groups to the setting of exceptional gauge groups. For instance, one duality sequence we discuss is (E_{N})_{1}\leftrightarrow SU(9-N)_{-1}(EN)1↔SU(9−N)−1. Others such as SO(3)_{8}\leftrightarrow PSU(3)_{-6},SO(3)8↔PSU(3)−6, are dualities among theories with classical gauge groups that arise due to their embedding into an exceptional chiral algebra. We apply these equivalences between topological field theories to conjecture new boson-boson Chern-Simons-matter dualities. We also use them to determine candidate phase diagrams of time-reversal invariant G_{2}G2 gauge theory coupled to either an adjoint fermion, or two fundamental fermions.


1992 ◽  
Vol 07 (19) ◽  
pp. 4477-4486 ◽  
Author(s):  
MARCO A.C. KNEIPP

We discuss the generalization of Abelian Chern-Simons theories when θ-angles and magnetic monopoles are included. We map these three dimensional theories into sectors of two-dimensional conformal field theories. The introduction of θ-angles allows us to establish in a consistent fashion a connection between Abelian Chern-Simons and 2-d free scalar field compactified on a noneven integral lattice. The Abelian Chern-Simons with magnetic monopoles is related to a conformal field theory in which the sum of the charges of the chiral vertex operators inside a correlator is different from zero.


2014 ◽  
Vol 29 (03n04) ◽  
pp. 1450027 ◽  
Author(s):  
IGNATIOS ANTONIADIS ◽  
GEORGE SAVVIDY

We present a general analysis of gauge invariant, exact and metric independent forms which can be constructed using higher-rank field-strength tensors. The integrals of these forms over the corresponding space–time coordinates provides new topological Lagrangians. With these Lagrangians one can define gauge field theories which generalize the Chern–Simons quantum field theory. We also present explicit expressions for the potential gauge anomalies associated with the tensor gauge fields and classify all possible anomalies that can appear in lower dimensions.


1995 ◽  
Vol 10 (06) ◽  
pp. 487-493
Author(s):  
BOGUSŁAW BRODA

A new, formal, noncombinatorial approach to invariants of three-dimensional manifolds of Reshetikhin, Turaev and Witten in the framework of nonperturbative topological quantum Chern–Simons theory, corresponding to an arbitrary compact simple Lie group, is presented. A direct implementation of surgery instructions in the context of quantum field theory is proposed. An explicit form of the specialization of the invariant to the group SU(2) is shown.


1994 ◽  
Vol 09 (23) ◽  
pp. 4063-4076
Author(s):  
R. E. C. PERRET

A procedure for constructing topological actions from centrally extended Lie algebras is introduced. For a Kac–Moody algebra, this produces the three-dimensional Chern–Simons theory, while for the Virasoro algebra, the result is a new three-dimensional topological field theory whose physical states satisfy the Virasoro Ward identity. This topological field theory is shown to be a first order formulation of two-dimensional induced gravity in the chiral gauge. The extension to W3 gravity is discussed.


Sign in / Sign up

Export Citation Format

Share Document