scholarly journals Topological defects formation with momentum dissipation

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Zhi-Hong Li ◽  
Hua-Bi Zeng ◽  
Hai-Qing Zhang

Abstract We employ holographic techniques to explore the effects of momentum dissipation on the formation of topological defects during the critical dynamics of a strongly coupled superconductor after a linear quench of temperature. The gravity dual is the dRGT massive gravity in which the conservation of momentum in the boundary field theory is broken by the presence of a bulk graviton mass. From the scaling relations of defects number and “freeze-out” time to the quench rate for various graviton masses, we demonstrate that the momentum dissipation induced by graviton mass has little effect on the scaling laws compared to the Kibble-Zurek mechanism. Inspired from Pippard’s formula in condensed matter, we propose an analytic relation between the coherence length and the graviton mass, which agrees well with the numerical results from the quasi-normal modes analysis. As a result, the coherence length decreases with respect to the graviton mass, which indicates that the momentum dissipation will augment the number of topological defects.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
J. R. L. Santos ◽  
A. de Souza Dutra ◽  
O. C. Winter ◽  
R. A. C. Correa

In this work, we apply the so-called BPS method in order to obtain topological defects for a complex scalar field Lagrangian introduced by Trullinger and Subbaswamy. The BPS approach led us to compute new analytical solutions for this model. In our investigation, we found analytical configurations which satisfy the BPS first-order differential equations but do not obey the equations of motion of the model. Such defects were named nonphysical ones. In order to recover the physical meaning of these defects, we proposed a procedure which can transform them into BPS states of new scalar field models. The new models here founded were applied in the context of hybrid cosmological scenarios, where we derived cosmological parameters compatible with the observed Universe. Such a methodology opens a new window to connect different two scalar fields systems and can be implemented in several distinct applications such as Bloch Branes, Lorentz and Symmetry Breaking Scenarios, Q-Balls, Oscillons, Cosmological Contexts, and Condensed Matter Systems.


2020 ◽  
Vol 223 (1) ◽  
pp. 612-621 ◽  
Author(s):  
S Talavera-Soza ◽  
A Deuss

SUMMARY We measured inner core normal mode pair 10S2–11S2, which cross-couples strongly for 1-D structure and is sensitive to shear wave velocity, and find that our measurements agree with a strongly attenuating inner core. In the past, this mode pair has been used to try to resolve the debate on whether the inner core is strongly or weakly attenuating. Its large spectral amplitude in observed data, possible through the apparent low attenuation of 10S2, has been explained as evidence of a weakly attenuating inner core. However, this contradicted body waves and other normal modes studies, which resulted in this pair of modes being excluded from inner core modelling. Modes 10S2 and 11S2 are difficult to measure and interpret because they depend strongly on the underlying 1-D model used. This strong dependence makes these modes change both their oscillation characteristics and attenuation values under a small 1-D perturbation to the inner core model. Here, we include this effect by allowing the pair of modes to cross-couple or resonate through 1-D structure and treat them as one hybrid mode. We find that, unlike previously thought, the source of 10S2 visibility is its strong cross-coupling to 11S2 for both 1-D elastic and anelastic structure. We also observe that the required 1-D perturbation is much smaller than the 2 per cent vs perturbation previously suggested, because we simultaneously measure 3-D structure in addition to 1-D structure. Only a 0.5 per cent increase in inner core vs or a 0.5 per cent decrease in inner core radius is required to explain 10S2–11S2 observations and a weakly attenuating inner core is not needed. In addition, the 3-D structure measurements of mode 10S2 and its cross-coupling to 11S2 show the typical strong zonal splitting pattern attributed to inner core cylindrical anisotropy, allowing us to add further constrains to deeper regions of the inner core.


1997 ◽  
Vol 50 (4) ◽  
pp. 697 ◽  
Author(s):  
T. W. B. Kibble

Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.


Author(s):  
Aron Beekman ◽  
Louk Rademaker ◽  
Jasper van Wezel

Perhaps the most important aspect of symmetry in physics is the idea that a state does not need to have the same symmetries as the theory that describes it. This phenomenon is known as spontaneous symmetry breaking. In these lecture notes, starting from a careful definition of symmetry in physics, we introduce symmetry breaking and its consequences. Emphasis is placed on the physics of singular limits, showing the reality of symmetry breaking even in small-sized systems. Topics covered include Nambu-Goldstone modes, quantum corrections, phase transitions, topological defects and gauge fields. We provide many examples from both high energy and condensed matter physics. These notes are suitable for graduate students.


2021 ◽  
Vol 118 (10) ◽  
pp. e2018218118
Author(s):  
Amélie Chardac ◽  
Suraj Shankar ◽  
M. Cristina Marchetti ◽  
Denis Bartolo

In equilibrium, disorder conspires with topological defects to redefine the ordered states of matter in systems as diverse as crystals, superconductors, and liquid crystals. Far from equilibrium, however, the consequences of quenched disorder on active condensed matter remain virtually uncharted. Here, we reveal a state of strongly disordered active matter with no counterparts in equilibrium: a dynamical vortex glass. Combining microfluidic experiments and theory, we show how colloidal flocks collectively cruise through disordered environments without relaxing the topological singularities of their flows. The resulting state is highly dynamical but the flow patterns, shaped by a finite density of frozen vortices, are stationary and exponentially degenerated. Quenched isotropic disorder acts as a random gauge field turning active liquids into dynamical vortex glasses. We argue that this robust mechanism should shape the collective dynamics of a broad class of disordered active matter, from synthetic active nematics to collections of living cells exploring heterogeneous media.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1621-1640 ◽  
Author(s):  
D. M. STAMPER-KURN ◽  
A. P. CHIKKATUR ◽  
A. GÖRLITZ ◽  
S. GUPTA ◽  
S. INOUYE ◽  
...  

Gaseous Bose-Einstein condensates are a macroscopic condensed-matter system which can be understood from a microscopic, atomic basis. We present examples of how the optical tools of atomic physics can be used to probe properties of this system. In particular, we describe how stimulated light scattering can be used to measure the coherence length of a condensate, to measure its excitation spectrum, and to reveal the presence of pair excitations in the many-body condensate wavefunction.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Zhi-Hong Li ◽  
Chuan-Yin Xia ◽  
Hua-Bi Zeng ◽  
Hai-Qing Zhang

Abstract Gauge invariance plays an important role in forming topological defects. In this work, from the AdS/CFT correspondence, we realize the clusters of equal-sign vortices during the course of critical dynamics of a strongly coupled superconductor. This is the first time to achieve the equal-sign vortex clusters in strongly coupled systems. The appearance of clusters of equal-sign vortices is a typical character of flux trapping mechanism, distinct from Kibble-Zurek mechanism which merely presents vortex-antivortex pair distributions resulting from global symmetry breaking. Numerical results of spatial correlations and net fluxes of the equal-sign vortex clusters quantitatively support the positive correlations between vortices. The linear dependence between the vortex number and the amplitude of magnetic field at the ‘trapping’ time demonstrates the flux trapping mechanism very well.


Sign in / Sign up

Export Citation Format

Share Document