scholarly journals Color-octet scalars in Dirac gaugino models with broken R symmetry

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in supersymmetric models with Dirac gaugino masses that feature an explicitly broken R symmetry (R-broken models). We construct such models by augmenting minimal R-symmetric models with a fairly general set of supersymmetric and softly supersymmetry-breaking operators that explicitly break R symmetry. We then compute the rates of all significant two-body decays and highlight new features that appear as a result of R symmetry breaking, including enhancements to extant decay rates, novel tree- and loop-level decays, and improved cross sections of single sgluon production. We demonstrate in some detail how the familiar results from minimal R-symmetric models can be obtained by restoring R symmetry. In parallel to this discussion, we explore constraints on these models from the Large Hadron Collider. We find that, in general, R symmetry breaking quantitatively affects existing limits on color-octet scalars, perhaps closing loopholes for light CP-odd (pseudoscalar) sgluons while opening one for a light CP-even (scalar) particle. Qualitatively, however, we find that — much as for minimal R-symmetric models, despite stark differences in phenomenology — scenarios with broken R symmetry and two sgluons below the TeV scale can be accommodated by existing searches.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in minimal supersymmetric models endowed with a global continuous R symmetry. We systematically catalog the significant decay channels of scalar and pseudoscalar sgluons and identify novel features that are natural in these models. These include decays in nonstandard diboson channels, such as to a gluon and a photon; three-body decays with considerable branching fractions; and long-lived particles with displaced vertex signatures. We also discuss the single and pair production of these particles and show that they can evade existing constraints from the Large Hadron Collider, to varying extents, in large regions of reasonable parameter space. We find, for instance, that a 725 GeV scalar and a 350 GeV or lighter pseudoscalar can still be accommodated in realistic scenarios.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


2012 ◽  
Vol 86 (5) ◽  
Author(s):  
Anupama Atre ◽  
R. Sekhar Chivukula ◽  
Pawin Ittisamai ◽  
Elizabeth H. Simmons ◽  
Jiang-Hao Yu

2018 ◽  
Vol 182 ◽  
pp. 02119
Author(s):  
Liaoshan Shi

In this report, we present the latest ATLAS results on the measurement of the cross sections and couplings of the Higgs boson in the fermionic decay modes, H → μ+μ-, H → τ+τ- and H → bb. The searches are performed with proton-proton collision data delivered by the Large Hadron Collider during Run 1 and the first two years of Run 2 at √s = 7, 8 and 13 TeV.


2011 ◽  
Vol 26 (02) ◽  
pp. 87-100
Author(s):  
JAMES MAXIN ◽  
VAN E. MAYES ◽  
D. V. NANOPOULOS

No-scale supergravity is a framework where it is possible to naturally explain radiative electroweak symmetry breaking and correlate it with the effective SUSY breaking scale. Many string compactifications have a classical no-scale structure, resulting in a one-parameter model (OPM) for the supersymmetry breaking soft terms, which results in a highly constrained subset of mSUGRA. We investigate the allowed supersymmetry parameter space for a generic one-parameter model taking into account the most recent experimental constraints. We also survey the possible signatures which may be observable at the Large Hadron Collider (LHC). Finally, we compare collider signatures of OPM to those from a model with non-universal soft terms, in particular those of an intersecting D6-brane model.


2018 ◽  
Vol 191 ◽  
pp. 02015
Author(s):  
Mikhail Vysotsky ◽  
Evgenii Zhemchugov

The Large Hadron Collider is considered as a photon-photon collider with the photons produced in ultraperipheral collisions of protons or heavy ions. The equivalent photon approximation is applied to derive analytical formulae for the fiducial cross sections of reactions pp(γγ) → pp μ+μ- and Pb Pb (γγ) → Pb Pb μ+μ-. The results are compared to the measurements reported by the ATLAS collaboration.


2018 ◽  
Vol 33 (13) ◽  
pp. 1850077 ◽  
Author(s):  
V. A. Petrov ◽  
V. A. Okorokov

We discuss an apparent correlation between the onset of the rising regime for the total cross-sections and the slowdown of the rise of the forward slopes with energy. It is shown that even at highest energies achieved with the large hadron collider (LHC) the proper sizes of the colliding protons comprise the bulk of the interaction region. This seems to witness that the “asymptopia” — a hypothetical “truly asymptotic” regime — lies at energies no less than [Formula: see text] (100 TeV). In the course of reasoning, we also discuss the question of the dependence of the effective sizes of hadrons in collision on the type of their interaction.


2009 ◽  
Vol 24 (25) ◽  
pp. 1955-1969 ◽  
Author(s):  
ARE R. RAKLEV

This brief review deals with recent interest in the prospects of observing a Massive Metastable Charged Particle (MMCP) at the Large Hadron Collider (LHC), and measuring its properties there. We discuss the motivation for scenarios with MMCPs in a phenomenological context, focusing on supersymmetric models that allow us to explore the expected experimental signatures of MMCPs at the LHC. We review current bounds and give estimates of the LHC reach in terms of MMCP masses.


Sign in / Sign up

Export Citation Format

Share Document