scholarly journals The size seems to matter or where lies the “asymptopia”?

2018 ◽  
Vol 33 (13) ◽  
pp. 1850077 ◽  
Author(s):  
V. A. Petrov ◽  
V. A. Okorokov

We discuss an apparent correlation between the onset of the rising regime for the total cross-sections and the slowdown of the rise of the forward slopes with energy. It is shown that even at highest energies achieved with the large hadron collider (LHC) the proper sizes of the colliding protons comprise the bulk of the interaction region. This seems to witness that the “asymptopia” — a hypothetical “truly asymptotic” regime — lies at energies no less than [Formula: see text] (100 TeV). In the course of reasoning, we also discuss the question of the dependence of the effective sizes of hadrons in collision on the type of their interaction.

2013 ◽  
Vol 28 (20) ◽  
pp. 1350101
Author(s):  
XIANGDONG GAO ◽  
QIANG LI ◽  
CAI-DIAN LÜ

We report calculations of the gluon-induced Zg and Zgg productions in the Standard Model at the Large Hadron Collider (LHC) operating at both 7 TeV and 14 TeV collision energies. We present total cross-sections and differential distributions of the processes and compare them with the leading and next-to-leading order QCD pp → Z+1 jet, Z+2 jets results. Our results show that the gluon-induced Zg and Zgg productions contribute to pp → Z+1 jet, Z+2 jets at 1% level.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


2018 ◽  
Vol 182 ◽  
pp. 02119
Author(s):  
Liaoshan Shi

In this report, we present the latest ATLAS results on the measurement of the cross sections and couplings of the Higgs boson in the fermionic decay modes, H → μ+μ-, H → τ+τ- and H → bb. The searches are performed with proton-proton collision data delivered by the Large Hadron Collider during Run 1 and the first two years of Run 2 at √s = 7, 8 and 13 TeV.


2018 ◽  
Vol 191 ◽  
pp. 02015
Author(s):  
Mikhail Vysotsky ◽  
Evgenii Zhemchugov

The Large Hadron Collider is considered as a photon-photon collider with the photons produced in ultraperipheral collisions of protons or heavy ions. The equivalent photon approximation is applied to derive analytical formulae for the fiducial cross sections of reactions pp(γγ) → pp μ+μ- and Pb Pb (γγ) → Pb Pb μ+μ-. The results are compared to the measurements reported by the ATLAS collaboration.


2018 ◽  
Vol 27 (09) ◽  
pp. 1850075
Author(s):  
Ya-Ping Xie ◽  
Xurong Chen

Meson cross-sections are evaluated in two-photon interaction in hadron–hadron ultraperipheral collisions at the CERN Large Hadron Collider (LHC) and Future Circular Collider (FCC). Two models of the equivalent photon flux are employed in the calculations. Cross-sections of meson production in proton–proton and proton-lead ultraperipheral collisions are presented in this paper. These meson cross-sections in two-photon interaction can be applied to predict cross-sections in the experiments at the LHC and FCC.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in supersymmetric models with Dirac gaugino masses that feature an explicitly broken R symmetry (R-broken models). We construct such models by augmenting minimal R-symmetric models with a fairly general set of supersymmetric and softly supersymmetry-breaking operators that explicitly break R symmetry. We then compute the rates of all significant two-body decays and highlight new features that appear as a result of R symmetry breaking, including enhancements to extant decay rates, novel tree- and loop-level decays, and improved cross sections of single sgluon production. We demonstrate in some detail how the familiar results from minimal R-symmetric models can be obtained by restoring R symmetry. In parallel to this discussion, we explore constraints on these models from the Large Hadron Collider. We find that, in general, R symmetry breaking quantitatively affects existing limits on color-octet scalars, perhaps closing loopholes for light CP-odd (pseudoscalar) sgluons while opening one for a light CP-even (scalar) particle. Qualitatively, however, we find that — much as for minimal R-symmetric models, despite stark differences in phenomenology — scenarios with broken R symmetry and two sgluons below the TeV scale can be accommodated by existing searches.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
S. I. Godunov ◽  
V. A. Novikov ◽  
A. N. Rozanov ◽  
M. I. Vysotsky ◽  
E. V. Zhemchugov

Abstract Ultraperipheral collisions of high energy protons are a source of approximately real photons colliding with each other. Photon fusion can result in production of yet unknown charged particles in very clean events. The cleanliness of such an event is due to the requirement that the protons survive during the collision. Finite sizes of the protons reduce the probability of such outcome compared to point-like particles. We calculate the survival factors and cross sections for the production of heavy charged particles at the Large Hadron Collider.


2016 ◽  
Vol 31 (18) ◽  
pp. 1650101 ◽  
Author(s):  
Ufuk Aydemir ◽  
Djordje Minic ◽  
Chen Sun ◽  
Tatsu Takeuchi

We discuss a possible interpretation of the 750 GeV diphoton resonance, recently reported at the large hadron collider (LHC), within a class of [Formula: see text] models with gauge coupling unification. The unification is imposed by the underlying noncommutative geometry (NCG), which in these models is extended to a left–right symmetric completion of the Standard Model (SM). Within such unified [Formula: see text] models the Higgs content is restrictively determined from the underlying NCG, instead of being arbitrarily selected. We show that the observed cross-sections involving the 750 GeV diphoton resonance could be realized through a SM singlet scalar field accompanied by colored scalars, present in these unified models. In view of this result, we discuss the underlying rigidity of these models in the NCG framework and the wider implications of the NCG approach for physics beyond the SM.


Sign in / Sign up

Export Citation Format

Share Document