scholarly journals The gravitino and the swampland

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Niccolò Cribiori ◽  
Dieter Lüst ◽  
Marco Scalisi

Abstract We propose a new swampland conjecture stating that the limit of vanishing gravitino mass corresponds to the massless limit of an infinite tower of states and to the consequent breakdown of the effective field theory. We test our proposal in large classes of models coming from compactification of string theory to four dimensions, where we identify the Kaluza-Klein nature of the tower of states becoming light. We point out a general relation between the gravitino mass and abelian gauge coupling in models with extended supersymmetry, which can survive also in examples with minimal supersymmetry. This allows us to connect our conjecture to other well established swampland conjectures, such as the weak gravity conjecture or the absence of global symmetries in quantum gravity. We discuss phenomenological implications of our conjecture in (quasi-)de Sitter backgrounds and extract a lower bound for the gravitino mass in terms of the Hubble parameter.

2001 ◽  
Vol 16 (06) ◽  
pp. 1015-1108 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We review (mainly) quantum effects in the theories where the gravity sector is described by metric and dilaton. The one-loop effective action for dilatonic gravity in two and four dimensions is evaluated. Renormalization group equations are constructed. The conformal anomaly and induced effective action for 2d and 4d dilaton coupled theories are found. It is applied to the study of quantum aspects of black hole thermodynamics, like calculation of Hawking radiation and quantum corrections to black hole parameters and investigation of quantum instability for such objects with multiple horizons. The use of the above effective action in the construction of nonsingular cosmological models in Einstein or Brans–Dicke (super)gravity and investigation of induced wormholes in supersymmetric Yang–Mills theory are given.5d dilatonic gravity (bosonic sector of compactified IIB supergravity) is discussed in connection with bulk/boundary (or AdS/CFT) correspondence. Running gauge coupling and quark–antiquark potential for boundary gauge theory at zero or nonzero temperature are calculated from d=5 dilatonic anti-de Sitter-like background solution which represents anti-de Sitter black hole for periodic time.


2006 ◽  
Vol 21 (03) ◽  
pp. 265-274 ◽  
Author(s):  
FRANCESCO CIANFRANI ◽  
GIOVANNI MONTANI

In this work we deal with the extension of the Kaluza–Klein approach to a non-Abelian gauge theory; we show how we need to consider the link between the n-dimensional model and a four-dimensional observer physics, in order to reproduce field equations and gauge transformations in the four-dimensional picture. More precisely, in field equations any dependence on extra coordinates is canceled out by an integration, as consequence of the unobservability of extra dimensions. Thus, by virtue of this extra dimension unobservability, we are able to recast the multidimensional Einstein equations into the four-dimensional Einstein–Yang–Mills ones, as well as all the right gauge transformations of fields are induced. The same analysis is performed for the Dirac equation describing the dynamics of the matter fields and, again, the gauge coupling with Yang–Mills fields are inferred from the multidimensional free fields theory, together with the proper spinors transformations.


2013 ◽  
Vol 28 (01) ◽  
pp. 1330002 ◽  
Author(s):  
GORDON KANE ◽  
RAN LU ◽  
BOB ZHENG

The August 2011 Higgs mass prediction was based on an ongoing six-year project studying M-theory compactified on a manifold of G2 holonomy, with significant contributions from Jing Shao, Eric Kuflik and others and particularly co-led by Bobby Acharya and Piyush Kumar. The M-theory results include stabilization of all moduli in a de Sitter vacuum, gauge coupling unification, derivation of TeV scale physics (solving the hierarchy problem), the derivation that generically scalar masses are equal to the gravitino mass which is larger than about 30 TeV, derivation of the Higgs mechanism via radiative electroweak symmetry breaking, absence of the flavor and CP problems, and the accommodation of string axions. The tan β and the μ parameter are part of the theory and are approximately calculated; as a result, the little hierarchy problem is greatly reduced. The heavy scalars imply that decoupling rare decays such as Bs →μ+ μ- should not deviate from their Standard Model values. This paper summarizes the results relevant to the Higgs mass prediction. A recent review [Int. J. Mod. Phys. A27, 1230012 (2012)] describes the program more broadly. Some of the results such as the scalar masses being equal to the gravitino mass and larger than about 30 TeV, derived early in the program, hold generically for compactified string theories as well as for compactified M-theory, while some other results may or may not. If the world is described by M-theory compactified on a G2 manifold and has a Higgs mechanism (so it could be our world) then Mh was predicted to be 126±2 GeV before the measurement. The derivation has some assumptions not related to the Higgs mass, but involves no free parameters.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2010 ◽  
Vol 25 (04) ◽  
pp. 283-293 ◽  
Author(s):  
JITESH R. BHATT ◽  
SUDHANWA PATRA ◽  
UTPAL SARKAR

The gravitational corrections to the gauge coupling constants of Abelian and non-Abelian gauge theories have been shown to diverge quadratically. Since this result will have interesting consequences, this has been analyzed by several authors from different approaches. We propose to discuss this issue from a phenomenological approach. We analyze the SU(5) gauge coupling unification and argue that the gravitational corrections to gauge coupling constants may not vanish when higher dimensional non-renormalizable terms are included in the problem.


1991 ◽  
Vol 06 (17) ◽  
pp. 1547-1552
Author(s):  
A. DAVIDSON ◽  
Y. VERBIN

Asymptotically Euclidean regions connected by a wormhole may differ by their associated gauge coupling constants. This idea is realized in a field-theoretical manner using a conformally coupled scalar field in five dimensions. An SO (4) × U (1) e.m. -symmetric configuration is derived, describing a Kaluza–Klein bottle coupled to a Tolman–Hawking wormhole.


2001 ◽  
Vol 16 (16) ◽  
pp. 2747-2769 ◽  
Author(s):  
EDWARD WITTEN

The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of [Formula: see text] super-Yang–Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Thibaut Coudarchet ◽  
Emilian Dudas ◽  
Hervé Partouche

Abstract Starting from a peculiar orientifold projection proposed long ago by Angelantonj and Cardella, we elaborate on a novel perturbative scenario that involves only D-branes, together with the two types of orientifold planes O± and anti-orientifold planes $$ {\overline{\mathrm{O}}}_{\pm } $$ O ¯ ± . We elucidate the microscopic ingredients of such models, connecting them to a novel realization of brane supersymmetry breaking. Depending on the position of the D-branes in the internal space, supersymmetry can be broken at the string scale on branes, or alternatively only at the massive level. The main novelty of this construction is that it features no NS-NS disk tadpoles, while avoiding open-string instabilities. The one-loop potential, which depends on the positions of the D-branes, is minimized for maximally broken, non-linearly realized supersymmetry. The orientifold projection and the effective field theory description reveal a soft breaking of supersymmetry in the closed-string sector. In such models it is possible to decouple the gravitino mass from the value of the scalar potential, while avoiding brane instabilities.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Adil Belhaj ◽  
Hasan El Moumni ◽  
Karima Masmar

We investigate numerically fR gravity effects on certain AdS/CFT tools including holographic entanglement entropy and two-point correlation functions for a charged single accelerated Anti-de Sitter black hole in four dimensions. We find that both holographic entanglement entropy and two-point correlation functions decrease by increasing the acceleration parameter A, matching perfectly with literature. Taking into account the fR gravity parameter η, the decreasing scheme of the holographic quantities persist. However, we observe a transition-like point where the behavior of the holographic tools changes. Two regions meeting at such a transit-like point are shown up. In such a nomination, the first one is associated with slow accelerating black holes while the second one corresponds to a fast accelerating solution. In the first region, the holographic entanglement entropy and two-point correlation functions decrease by increasing the η parameter. However, the behavioral situation is reversed in the second one. Moreover, a cross-comparison between the entropy and the holographic entanglement entropy is presented, providing another counterexample showing that such two quantities do not exhibit similar behaviors.


Sign in / Sign up

Export Citation Format

Share Document