scholarly journals Comment on “The phase diagram of the multi-matrix model with ABAB-interaction from functional renormalization”

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Carlos I. Perez-Sanchez

Abstract Recently, [JHEP12 131 (2020)] obtained (a similar, scaled version of) the (a, b)-phase diagram derived from the Kazakov-Zinn-Justin solution of the Hermitian two-matrix model with interactions$$ -\mathrm{Tr}\left\{\frac{a}{4}\left({A}^4+{B}^4\right)+\frac{b}{2} ABAB\right\}, $$ − Tr a 4 A 4 + B 4 + b 2 ABAB , starting from Functional Renormalization. We comment on something unexpected: the phase diagram of [JHEP12 131 (2020)] is based on a βb-function that does not have the one-loop structure of the Wetterich-Morris equation. This raises the question of how to reproduce the phase diagram from a set of β-functions that is, in its totality, consistent with Functional Renormalization. A non-minimalist, yet simple truncation that could lead to the phase diagram is provided. Additionally, we identify the ensemble for which the result of op. cit. would be entirely correct.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


1991 ◽  
Vol 06 (25) ◽  
pp. 4491-4515 ◽  
Author(s):  
OLAF LECHTENFELD ◽  
RASHMI RAY ◽  
ARUP RAY

We investigate a zero-dimensional Hermitian one-matrix model in a triple-well potential. Its tree-level phase structure is analyzed semiclassically as well as in the framework of orthogonal polynomials. Some multiple-arc eigenvalue distributions in the first method correspond to quasiperiodic large-N behavior of recursion coefficients for the second. We further establish this connection between the two approaches by finding three-arc saddle points from orthogonal polynomials. The latter require a modification for nondegenerate potential minima; we propose weighing the average over potential wells.


1993 ◽  
Vol 08 (13) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. BECKER ◽  
M. BECKER

We present the solution of the discrete super-Virasoro constraints to all orders of the genus expansion. Integrating over the fermionic variables we get a representation of the partition function in terms of the one-matrix model. We also obtain the non-perturbative solution of the super-Virasoro constraints in the double scaling limit but do not find agreement between our flows and the known supersymmetric extensions of KdV.


Author(s):  
H. Q. Lin ◽  
E. R. Gagliano ◽  
D. K. Campbell ◽  
E. H. Fradkin ◽  
J. E. Gubernatis

1992 ◽  
Vol 82 (7) ◽  
pp. 523-525 ◽  
Author(s):  
K. Hallberg ◽  
C.A. Balseiro

1992 ◽  
Vol 07 (33) ◽  
pp. 3081-3100 ◽  
Author(s):  
G.P. KORCHEMSKY

The critical behavior of the D=0 matrix model with the potential perturbed by a nonlocal term generating touchings between random surfaces is studied. It is found that the phase diagram of the model has many features of the phase diagram of discretized Polyakov’s bosonic string with higher order curvature terms included. It contains the phase of smooth (Liouville) surfaces, the intermediate phase and the phase of branched polymers. The perturbation becomes irrelevant at the first phase and dominates at the third one.


Sign in / Sign up

Export Citation Format

Share Document