scholarly journals Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
◽  
A. Simón ◽  
Y. Ifergan ◽  
A. B. Redwine ◽  
R. Weiss-Babai ◽  
...  

Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ∼ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ∼ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e−e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.

2021 ◽  
Vol 2105 (1) ◽  
pp. 012016
Author(s):  
Ioannis Katsioulas

Abstract The nature of the neutrino is a central questions in physics. The search for neutrinoless double beta decay is the most sensitive experimental approach to demonstrate that the neutrino is a Majorana particle. Observation of such a rare process demands a detector with an excellent energy resolution, extremely low background, and a large mass of a double beta decaying isotope. R2D2 aims to develop a novel spherical high-pressure TPC that meets all the above requirements. As a first step, the energy resolution of the R2D2 prototype was measured. A 1.1% (FWHM) energy resolution was achieved for 5.3 MeV α-particles in Ar:CH4 at pressure up to 1.1 bar. This is a major milestone for R2D2 and paves the way for further studies with Xe gas and the possible use of this technology for neutrinoless double beta decay searches.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Alessio Caminata ◽  
Douglas Adams ◽  
Chris Alduino ◽  
Krystal Alfonso ◽  
Frank Avignone ◽  
...  

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO 2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO 2 exposure of 86.3 kg yr , characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts / ( keV kg yr ) . In this physics run, CUORE placed a lower limit on the decay half-life of neutrinoless double beta decay of 130 Te > 1.3 · 10 25 yr (90% C.L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130 Te 2 ν β β decay with a resulting half-life of T 1 / 2 2 ν = [ 7.9 ± 0.1 ( stat . ) ± 0.2 ( syst . ) ] × 10 20 yr which is the most precise measurement of the half-life and compatible with previous results.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
D. R. Artusa ◽  
F. T. Avignone ◽  
O. Azzolini ◽  
M. Balata ◽  
T. I. Banks ◽  
...  

Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββdecay of130Te using an array of 988 TeO2crystal bolometers operated at 10 mK. The detector will contain 206 kg of130Te and have an average energy resolution of 5 keV; the projected 0νββdecay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ(9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.


2015 ◽  
Vol 10 (12) ◽  
pp. P12020-P12020 ◽  
Author(s):  
J. Renner ◽  
A. Cervera ◽  
J.A. Hernando ◽  
A. Imzaylov ◽  
F. Monrabal ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 341
Author(s):  
Valerio D’Andrea ◽  
Natalia Di Marco ◽  
Matthias Bernhard Junker ◽  
Matthias Laubenstein ◽  
Carla Macolino ◽  
...  

In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the 76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The Majorana and Gerda experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2×10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the Gerda experiment setting a limit on the half-life of 76Ge 0νββ decay at T1/2>1.8×1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.


2018 ◽  
Vol 178 ◽  
pp. 01006 ◽  
Author(s):  
C.-H. Yu ◽  
S.I. Alvis ◽  
I.J. Arnquist ◽  
F.T. Avignone ◽  
A.S. Barabash ◽  
...  

The Majorana Collaboration is using an array of high-purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. Searches for neutrinoless double-beta decay are understood to be the only viable experimental method for testing the Majorana nature of the neutrino. Observation of this decay would imply violation of lepton number, that neutrinos are Majorana in nature, and provide information on the neutrino mass. The Majorana Demonstrator comprises 44.1 kg of p-type point-contact Ge detectors (29.7 kg enriched in 76Ge) surrounded by a low-background shield system. The experiment achieved a high efficiency of converting raw Ge material to detectors and an unprecedented detector energy resolution of 2.5 keV FWHM at Qββ. The Majorana collaboration began taking physics data in 2016. This paper summarizes key construction aspects of the Demonstrator and shows preliminary results from initial data.


1989 ◽  
Vol 04 (03) ◽  
pp. 213-216 ◽  
Author(s):  
WEIHUA TIAN ◽  
KE YOU ◽  
YUCAN ZHU ◽  
WENHENG ZHAO ◽  
ZHIPENG ZHENG ◽  
...  

The test results of the properties of the unactivated CaF 2 scintillation crystal detector is reported. The energy response of a small size CaF 2 crystal and a large CaF 2 crystal detector, which will be used in the Ca 48 Double Beta Decay (DBD) experiment, to gamma rays and an electron beam from 6 to 10 MeV was tested. The results indicate that the linear energy response range can be extended to 10 MeV for the large CaF 2 detector. Meanwhile, the relation of the energy resolution to the incident particle energy is represented by E−1/2 (MeV) . (It is anticipated that the energy resolution at 4.27 MeV will be about 9%.)


Sign in / Sign up

Export Citation Format

Share Document