scholarly journals Six-point functions and collisions in the black hole interior

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Felix M. Haehl ◽  
Alexandre Streicher ◽  
Ying Zhao

Abstract In the eternal AdS black hole geometry, we consider two signals sent from the boundaries into the black hole interior shared between the two asymptotic regions. We compute three different out-of-time-order six-point functions to quantify various properties of the collision of these signals behind the horizons: (i) We diagnose the strength of the collision by probing the two-signal state on a late time slice with boundary operators. (ii) We quantify two-sided operator growth, which provides a dual description of the signals meeting in the black hole interior, in terms of the quantum butterfly effect and quantum circuits. (iii) We consider an explicit coupling between the left and right CFTs to make the wormhole traversable and extract information about the collision product from behind the horizon. At a technical level, our results rely on the method of eikonal resummation to obtain the relevant gravitational contributions to Lorentzian six-point functions at all orders in the GN-expansion. We observe that such correlation functions display an intriguing factorization property. We corroborate these results with geodesic computations of six-point functions in two- and three-dimensional gravity.

2019 ◽  
Vol 34 (28) ◽  
pp. 1950168 ◽  
Author(s):  
M. Ashrafi

Using modular bootstrap we show the lightest primary fields of a unitary compact two-dimensional conformal field theory (with [Formula: see text], [Formula: see text]) has a conformal weight [Formula: see text]. This implies that the upper bound on the dimension of the lightest primary fields depends on their spin. In particular if the set of lightest primary fields includes extremal or near extremal states whose spin to dimension ratio [Formula: see text], the corresponding dimension is [Formula: see text]. From AdS/CFT correspondence, we obtain an upper bound on the spectrum of black hole in three-dimensional gravity. Our results show that if the first primary fields have large spin, the corresponding three-dimensional gravity has extremal or near extremal BTZ black hole.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
James Sully ◽  
Mark Van Raamsdonk ◽  
David Wakeham

Abstract In this note, we consider entanglement and Renyi entropies for spatial subsystems of a boundary conformal field theory (BCFT) or of a CFT in a state constructed using a Euclidean BCFT path integral. Holographic calculations suggest that these entropies undergo phase transitions as a function of time or parameters describing the subsystem; these arise from a change in topology of the RT surface. In recent applications to black hole physics, such transitions have been seen to govern whether or not the bulk entanglement wedge of a (B)CFT region includes a portion of the black hole interior and have played a crucial role in understanding the semiclassical origin of the Page curve for evaporating black holes.In this paper, we reproduce these holographic results via direct (B)CFT calculations. Using the replica method, the entropies are related to correlation functions of twist operators in a Euclidean BCFT. These correlations functions can be expanded in various channels involving intermediate bulk or boundary operators. Under certain sparseness conditions on the spectrum and OPE coefficients of bulk and boundary operators, we show that the twist correlators are dominated by the vacuum block in a single channel, with the relevant channel depending on the position of the twists. These transitions between channels lead to the holographically observed phase transitions in entropies.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Arjun Kar ◽  
Onkar Parrikar ◽  
Gábor Sárosi ◽  
Tomonori Ugajin

Abstract We consider a black hole in three dimensional AdS space entangled with an auxiliary radiation system. We model the microstates of the black hole in terms of a field theory living on an end of the world brane behind the horizon, and allow this field theory to itself have a holographic dual geometry. This geometry is also a black hole since entanglement of the microstates with the radiation leaves them in a mixed state. This “inception black hole” can be purified by entanglement through a wormhole with an auxiliary system which is naturally identified with the external radiation, giving a realization of the ER=EPR scenario. In this context, we propose an extension of the Ryu-Takayanagi (RT) formula, in which extremal surfaces computing entanglement entropy are allowed to pass through the brane into its dual geometry. This new rule reproduces the Page curve for evaporating black holes, consistently with the recently proposed “island formula”. We then separate the radiation system into pieces. Our extended RT rule shows that the entanglement wedge of the union of radiation subsystems covers the black hole interior at late times, but the union of entanglement wedges of the subsystems may not. This result points to a secret sharing scheme in Hawking radiation wherein reconstruction of certain regions in the interior is impossible with any subsystem of the radiation, but possible with all of it.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jibril Ben Achour ◽  
Etera R. Livine

Abstract We show that the Schwarzschild-(A)dS black hole mechanics possesses a hidden symmetry under the three-dimensional Poincaré group. This symmetry shows up after having gauge-fixed the diffeomorphism invariance in the symmetry-reduced homogeneous Einstein-Λ model and stands as a physical symmetry of the system. It dictates the geometry both in the black hole interior and exterior regions, as well as beyond the cosmological horizon in the Schwarzschild-dS case. It follows that one can associate a set of non-trivial conserved charges to the Schwarzschild-(A)dS black hole which act in each causally disconnected regions. In T-region, they act on fields living on spacelike hypersurface of constant time, while in R-regions, they act on time-like hypersurface of constant radius. We find that while the expression of the charges depend explicitly on the location of the hypersurface, the charge algebra remains the same at any radius in R-regions (or time in T-regions). Finally, the analysis of the Casimirs of the charge algebra reveals a new solution-generating map. The $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{R}}\right) $$ sl 2 ℝ Casimir is shown to generate a one-parameter family of deformation of the black hole geometry labelled by the cosmological constant. This gives rise to a new conformal bridge allowing one to continuously deform the Schwarzschild-AdS geometry to the Schwarzschild and the Schwarzschild-dS solutions.


2007 ◽  
Vol 22 (40) ◽  
pp. 3047-3055 ◽  
Author(s):  
B. CVETKOVIĆ ◽  
M. BLAGOJEVIĆ

Using N = 1+1 supersymmetric extension of the three-dimensional gravity with torsion, we show that a generic black hole has no exact supersymmetries, the extremal black hole has only one, while the zero-energy black hole has two. Combining these results with the asymptotic supersymmetry algebra, we are naturally led to interpret the zero-energy black hole as the ground state of the Ramond sector, and analogously, the anti-de Sitter solution as the ground state of the Neveu–Schwarz sector.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Rong-Gen Cai ◽  
Song He ◽  
Shao-Jiang Wang ◽  
Yu-Xuan Zhang

Abstract We revisit the late-time growth rate of various holographic complexity conjectures for neutral and charged AdS black holes with single or multiple horizons in two dimensional (2D) gravity like Jackiw-Teitelboim (JT) gravity and JT-like gravity. For complexity-action conjecture, we propose an alternative resolution to the vanishing growth rate at late-time for general 2D neutral black hole with multiple horizons as found in the previous studies for JT gravity. For complexity-volume conjectures, we obtain the generic forms of late-time growth rates in the context of extremal volume and Wheeler-DeWitt volume by appropriately accounting for the black hole thermodynamics in 2D gravity.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Elena Caceres ◽  
Arnab Kundu ◽  
Ayan K. Patra ◽  
Sanjit Shashi

Abstract We use the notion of double holography to study Hawking radiation emitted by the eternal BTZ black hole in equilibrium with a thermal bath, but in the form of warped CFT2 degrees of freedom. In agreement with the literature, we find entanglement islands and a phase transition in the entanglement surface, but our results differ significantly from work in AdS/CFT in three major ways: (1) the late-time entropy decreases in time, (2) island degrees of freedom exist at all times, not just at late times, with the phase transition changing whether or not these degrees of freedom include the black hole interior, and (3) the physics involves a field-theoretic IR divergence emerging when the boundary interval is too big relative to the black hole’s inverse temperature. This behavior in the entropy appears to be consistent with the non-unitarity of holographic warped CFT2 and demonstrates that the islands are not a phenomenon restricted to black hole information in unitary setups.


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


Sign in / Sign up

Export Citation Format

Share Document