scholarly journals Open effective theory of scalar field in rotating plasma

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bidisha Chakrabarty ◽  
P. M. Aswin

Abstract We study the effective dynamics of an open scalar field interacting with a strongly-coupled two-dimensional rotating CFT plasma. The effective theory is determined by the real-time correlation functions of the thermal plasma. We employ holographic Schwinger-Keldysh path integral techniques to compute the effective theory. The quadratic effective theory computed using holography leads to the linear Langevin dynamics with rotation. The noise and dissipation terms in this equation get related by the fluctuation-dissipation relation in presence of chemical potential due to angular momentum. We further compute higher order terms in the effective theory of the open scalar field. At quartic order, we explicitly compute the coefficient functions that appear in front of various terms in the effective action in the limit when the background plasma is slowly rotating. The higher order effective theory has a description in terms of the non-linear Langevin equation with non-Gaussianity in the thermal noise.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Bidisha Chakrabarty ◽  
Soumyadeep Chaudhuri

We study the dynamics of a quantum Brownian particle weakly coupled to a thermal bath. Working in the Schwinger-Keldysh formalism, we develop an effective action of the particle up to quartic terms. We demonstrate that this quartic effective theory is dual to a stochastic dynamics governed by a non-linear Langevin equation. The Schwinger-Keldysh effective theory, or the equivalent non-linear Langevin dynamics, is insufficient to determine the out of time order correlators (OTOCs) of the particle. To overcome this limitation, we construct an extended effective action in a generalised Schwinger-Keldysh framework. We determine the additional quartic couplings in this OTO effective action and show their dependence on the bath’s 4-point OTOCs. We analyse the constraints imposed on the OTO effective theory by microscopic reversibility and thermality of the bath. We show that these constraints lead to a generalised fluctuation-dissipation relation between the non-Gaussianity in the distribution of the thermal noise experienced by the particle and the thermal jitter in its damping coefficient. The quartic effective theory developed in this work provides extension of several results previously obtained for the cubic OTO dynamics of a Brownian particle.


2019 ◽  
Vol 97 (4) ◽  
pp. 360-373
Author(s):  
Fateme Rajabi ◽  
Kourosh Nozari

We study a new type of extended theory of gravity in the framework of general scalar–tensor theories in which the higher order terms of curvature are coupled with a scalar field and its derivatives. We analyze the stability and evolution of cosmological perturbations in this setup. For this purpose, we perturb the Hubble parameter, matter density, and scalar field to check stability and evolution of perturbations to first order. In this framework, we investigate stability conditions for de Sitter and power law solutions and we examine viability of cosmological evolution of these perturbations. We consider some specific f(R) models and show that the stability analysis gives some constraints on the parameters of these models.


2016 ◽  
Vol 30 (13) ◽  
pp. 1642006
Author(s):  
J. D. Fan ◽  
Y. M. Malozovsky

The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a layered 2D system that is a model system of cuprate superconductors and others such as atomic, nuclear, heavy-fermion systems, etc.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sabyasachi Maulik ◽  
Harvendra Singh

Abstract Gauge/gravity duality relates an AdS black hole with uniform boost with a boosted strongly-coupled CFT at finite temperature. We study the perturbative change in holographic entanglement entropy for strip sub-region in such gravity solutions up to third order and try to formulate a first law of entanglement thermodynamics including higher order corrections. The first law receives important contribution from an entanglement chemical potential in presence of boost. We find that suitable modifications to the entanglement temperature and entanglement chemical potential are required to account for higher order corrections. The results can be extended to non-conformal cases and AdS plane wave background.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xun Chen ◽  
Lin Zhang ◽  
Danning Li ◽  
Defu Hou ◽  
Mei Huang

Abstract We investigate rotating effect on deconfinement phase transition in an Einstein-Maxwell-Dilaton (EMD) model in bottom-up holographic QCD approach. By constructing a rotating black hole, which is supposed to be dual to rotating strongly coupled nuclear matter, we investigate the thermodynamic quantities, including entropy density, pressure, energy density, trace anomaly, sound speed and specific heat for both pure gluon system and two-flavor system under rotation. It is shown that those thermodynamic quantities would be enhanced by large angular velocity. Also, we extract the information of phase transition from those thermodynamic quantities, as well as the order parameter of deconfinement phase transition, i.e. the loop operators. It is shown that, in the T − ω plane, for two-flavor case with small chemical potential, the phase transition is always crossover. The transition temperature decreases slowly with angular velocity and chemical potential. For pure gluon system with zero chemical potential, the phase transition is always first order, while at finite chemical potential a critical end point (CEP) will present in the T − ω plane.


2013 ◽  
Vol 586 ◽  
pp. 237-240 ◽  
Author(s):  
Lucie Šestáková

Most of fracture analyses often require an accurate knowledge of the stress/displacement field over the investigated body. However, this can be sometimes problematic when only one (singular) term of the Williams expansion is considered. Therefore, also other terms should be taken into account. Such an approach, referred to as multi-parameter fracture mechanics is used and investigated in this paper. Its importance for short/long cracks and the influence of different boundary conditions are studied. It has been found out that higher-order terms of the Williams expansion can contribute to more precise description of the stress distribution near the crack tip especially for long cracks. Unfortunately, the dependences obtained from the analyses presented are not unambiguous and it cannot be strictly derived how many of the higher-order terms are sufficient.


1990 ◽  
Vol 235 (1-2) ◽  
pp. 141-146 ◽  
Author(s):  
Luc Marleau

Sign in / Sign up

Export Citation Format

Share Document