scholarly journals The Clockwork Standard Model

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Yoo-Jin Kang ◽  
Soonbin Kim ◽  
Hyun Min Lee

Abstract We consider various bulk fields with general dilaton couplings in the linear dilaton background in five dimensions as the continuum limit of clockwork models. We show that the localization of the zero modes of bulk fields and the mass gap in the KK spectrum depend not only on the bulk dilaton coupling, but also on the bulk mass parameter in the case of a bulk fermion. The consistency from universality and perturbativity of gauge couplings constrain the dilaton couplings to the brane-localized matter fields as well as the bulk gauge bosons. Constructing the Clockwork Standard Model (SM) in the linear dilaton background, we provide the necessary conditions for the bulk mass parameters for explaining the mass hierarchy and mixing for the SM fermions. We can introduce a sizable expansion parameter ε = $$ {e}^{-\frac{2}{3}{kz}_c} $$ e − 2 3 kz c for the realistic flavor structure in the quark sector without a fine-tuning in the bulk mass parameters, but at the expense of a large 5D Planck scale. On the other hand, we can use a smaller expansion parameter for lepton masses, in favor of the solution to the hierarchy problem of the Higgs mass parameter. We found that massive Kaluza-Klein (KK) gauge bosons and massive KK gravitons couple more strongly to light and heavy fermions, respectively, so there is a complementarity in the resonance researches for those KK modes at the LHC.

Author(s):  
Yoshiharu Kawamura

Abstract We propose a bottom-up approach in which a structure of high-energy physics is explored by accumulating existence proofs and/or no-go theorems in the standard model or its extension. As an illustration, we study fermion mass hierarchies based on an extension of the standard model with vector-like fermions. It is shown that the magnitude of elements of Yukawa coupling matrices can become $O(1)$ and a Yukawa coupling unification can be realized in a theory beyond the extended model, if vector-like fermions mix with three families. In this case, small Yukawa couplings in the standard model can be highly sensitive to a small variation of matrix elements, and it seems that the mass hierarchy occurs as a result of fine tuning.


Author(s):  
Eugenio Megías ◽  
Mariano Quirós

In this work, we study a warped five-dimensional (5D) model with ultraviolet (UV) and infrared (IR) branes, that solves the hierarchy problem with a fundamental 5D Planck scale [Formula: see text], and curvature parameter [Formula: see text], of the order of the 4D Planck mass [Formula: see text] TeV. The model exhibits a continuum of Kaluza–Klein (KK) modes with different mass gaps, at the TeV scale, for all fields. We have computed Green’s functions and spectral densities, and shown how the presence of a continuum KK spectrum can produce an enhancement in the cross-section of some Standard Model processes. The metric is linear near the IR, in conformal coordinates, as in the linear dilaton (LD) and 5D clockwork models, for which [Formula: see text] TeV. We also analyze a pure (continuum) LD scenario, solving the hierarchy problem with more conventional fundamental [Formula: see text] and [Formula: see text] scales of the order of [Formula: see text], and a continuum spectrum.


1996 ◽  
Vol 11 (15) ◽  
pp. 1247-1262 ◽  
Author(s):  
MIRJAM CVETIČ ◽  
PAUL LANGACKER

We address the mass ranges of new neutral gauge bosons and constraints on the accompanying exotic particles as predicted by a class of superstring models. Under certain assumptions about the supersymmetry breaking parameters we show that breaking of an additional U(1)′ symmetry is radiative when the appropriate Yukawa couplings of exotic particles are of order one, analogous to the radiative breaking of the electroweak symmetry in the supersymmetric standard model due to the large top-quark Yukawa coupling. Such large Yukawa couplings occur for a large class of string models. The Z′ and exotic masses are either of [Formula: see text], or of a scale intermediate between the string and electroweak scales. In the former case, [Formula: see text] may be achieved without excessive fine-tuning, and is within future experimental reach.


1999 ◽  
Vol 14 (32) ◽  
pp. 2223-2228 ◽  
Author(s):  
A. A. MACHADO ◽  
F. PISANO

Flavor dynamics chiral models of leptoquark fermions and bilepton gauge bosons with masses up to a few TeV, although coincident with physics of the Fermi scale standard model, address the fermion mass hierarchy and explain the flavor question. The presence of charged right-handed weak currents coupled to bileptons, which we point out here, is another feature of these chiral semisimple gauge theories.


2020 ◽  
Vol 35 (33) ◽  
pp. 2050274
Author(s):  
Yoshiharu Kawamura

We reconsider a generation of up-type quark mass hierarchy in the standard model and clarify how a mechanism works to realize the hierarchy without severe fine tuning.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


1999 ◽  
Vol 14 (14) ◽  
pp. 2173-2203 ◽  
Author(s):  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

Based on a non-Abelian generalization of electric–magnetic duality, the Dualized Standard Model (DSM) suggests a natural explanation for exactly three generations of fermions as the "dual colour" [Formula: see text] symmetry broken in a particular manner. The resulting scheme then offers on the one hand a fermion mass hierarchy and a perturbative method for calculating the mass and mixing parameters of the Standard Model fermions, and on the other hand testable predictions for new phenomena ranging from rare meson decays to ultra-high energy cosmic rays. Calculations to one-loop order gives, at the cost of adjusting only three real parameters, values for the following quantities all (except one) in very good agreement with experiment: the quark CKM matrix elements ‖Vrs‖, the lepton CKM matrix elements ‖Urs‖, and the second generation masses mc, ms, mμ. This means, in particular, that it gives near maximal mixing Uμ3 between νμ and ντ as observed by SuperKamiokande, Kamiokande and Soudan, while keeping small the corresponding quark angles Vcb, Vts. In addition, the scheme gives (i) rough order-of-magnitude estimates for the masses of the lowest generation, (ii) predictions for low energy FCNC effects such as KL→ eμ, and (iii) a possible explanation for the long-standing puzzle of air showers beyond the GZK cut-off. All these together, however, still represent but a portion of the possible physical consequences derivable from the DSM scheme, the majority of which are yet to be explored.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


Sign in / Sign up

Export Citation Format

Share Document