scholarly journals The dual of non-extremal area: differential entropy in higher dimensions

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Charles Rabideau

Abstract The Ryu-Takayanagi formula relates entanglement entropy in a field theory to the area of extremal surfaces anchored to the boundary of a dual AdS space. It is interesting to ask if there is also an information theoretic interpretation of the areas of non-extremal surfaces that are not necessarily boundary-anchored. In general, the physics outside such surfaces is associated to observers restricted to a time-strip in the dual boundary field theory. When the latter is two-dimensional, it is known that the differential entropy associated to the strip computes the length of the dual bulk curve, and has an interpretation in terms of the information cost in Bell pairs of restoring correlations inaccessible to observers in the strip. A general realization of this formalism in higher dimensions is unknown. We first prove a no-go theorem eliminating candidate expressions for higher dimensional differential entropy based on entropic c-theorems. Then we propose a new formula in terms of an integral of shape derivatives of the entanglement entropy of ball shaped regions. Our proposal stems from the physical requirement that differential entropy must be locally finite and conformally invariant. Demanding cancelation of the well-known UV divergences of entanglement entropy in field theory guides us to our conjecture, which we test for surfaces in AdS4. Our results suggest a candidate c-function for field theories in arbitrary dimensions.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Jiang Long

Abstract We present a new area law which is associated with the correlator of OPE blocks in higher dimensional conformal field theories (CFTs). The area law shows similar behaviour as black hole entropy or geometric entanglement entropy. It includes a leading term which is proportional to the area of the entanglement surface, and a logarithmic subleading term with degree q. We extract the UV cutoff independent coefficients and discuss various properties of the coefficients.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 125 ◽  
Author(s):  
Lesław Rachwał

Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1297
Author(s):  
Jun Tsujimura ◽  
Yasusada Nambu

The Ryu–Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu–Takayanagi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than as a surface. In this paper, we consider null rays emitted from the AdS boundary and construct a flow representing the causal holographic information. We present a sufficient and necessary condition that the causal information surface coincides with Ryu–Takayanagi surface. In particular, we show that, in spherical symmetric static spacetimes with a negative cosmological constant, wave fronts of null geodesics from a point on the AdS boundary become extremal surfaces and therefore they can be regarded as the Ryu–Takayanagi surfaces. In addition, from the viewpoint of flow, we propose a wave optical formula to calculate the causal holographic information.


Sign in / Sign up

Export Citation Format

Share Document