scholarly journals 4D $$ \mathcal{N} $$ = 1 Kaluza-Klein superspace

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Katrin Becker ◽  
Daniel Butter

Abstract Motivated by recent efforts to encode 11D supergravity in 4D $$ \mathcal{N} $$ N = 1 superfields, we introduce a general covariant framework relevant for describing any higher dimensional supergravity theory in external 4D $$ \mathcal{N} $$ N = 1 superspace with n additional internal coordinates. The superspace geometry admits both external and internal diffeomorphisms and provides the superfields necessary to encode the components of the higher dimensional vielbein, except for the purely internal sector, in a universal way that depends only on the internal dimension n. In contrast, the $$ \mathcal{N} $$ N = 1 superfield content of the internal sector of the metric is expected to be highly case dependent and involve covariant matter superfields, with additional hidden higher dimensional Lorentz and supersymmetry transformations realized in a non-linear manner.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Garrett Goon ◽  
Scott Melville ◽  
Johannes Noller

Abstract We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.


Author(s):  
Marinelle Espino ◽  
Harkaitz Eguiraun ◽  
Oihane Diaz de Cerio ◽  
José Antonio Carrero ◽  
Nestor Etxebarria ◽  
...  

AbstractFeeding 3.9 and 6.7 mg Hg/kg (Se/Hg molar ratios of 0.8 and 0.4, respectively) for 14 days negatively affected Dicentrarchus labrax growth and total DNTB- and thioredoxin-reductase (TrxR) activities and the transcription of four redox genes (txn1, gpx1, txnrd3, and txnrd2) in the liver, but a diet with 0.5 mg Hg/kg (Se/Hg molar ratio 6.6) slightly increased both reductase activities and the transcription of txn1, gpx1, and txnrd2. Feeding 6.7 mg Hg/kg for 53 days downregulated the genes of the thioredoxin system (txn1, txnrd3, and txnrd2) but upregulated gpx1, confirming the previously proposed complementarity among the antioxidant systems. Substitution of 20% of the feed by thawed white fish (hake) slightly counteracted the negative effects of Hg. The effects were not statistically significant and were dependent, in a non-linear manner, on the Se/Hg molar ratio of the feed but not on its Hg concentration. These results stress the need to consider the Se/Hg molar ratio of the feed/food when evaluating the toxicity of Hg.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550036
Author(s):  
Aurel Bejancu ◽  
Constantin Călin

Using the new approach on higher-dimensional Kaluza–Klein theories developed by the first author, we obtain the 4D Einstein equations on a (4 + n)D relativistic gauge Kaluza–Klein space. Adapted frame and coframe fields, adapted tensor fields, and the Riemannian adapted connection, have a fundamental role in the study. The high level of generality of the study, enables us to recover several results from earlier papers on this matter.


1989 ◽  
Vol 04 (19) ◽  
pp. 5119-5131 ◽  
Author(s):  
E. I. GUENDELMAN

Gravitational Bags are spherically symmetric solutions of higher-dimensional Kaluza Klein (K – K) theories, where the compact dimensions become very large near the center of the geometry, although they are small elsewhere. The K – K excitations therefore become very light when located near the center of this geometry and this appears to affect drastically the naive tower of the masses spectrum of K – K theories. In the context of string theories, string excitations can be enclosed by Gravitational Bags, making them not only lighter, but also localized, as observed by somebody, that does not probe the central regions. Strings, however, can still have divergent sizes, as quantum mechanics seems to demand, since the extra dimensions blow up at the center of the geometry. From a projected 4-D point of view, very massive string bits may lie inside their Schwarzschild radii, as pointed out by Casher, Gravitational Bags however are horizon free objects, so no conflict with macroscopic causality arises if the string excitations are enclosed by Gravitational Bags.


2010 ◽  
Vol 75 (7) ◽  
pp. 943-950 ◽  
Author(s):  
Svetlana Jeremic ◽  
Slavko Radenkovic ◽  
Ivan Gutman

Cyclic conjugation in benzo-annelated triphenylenes was studied by means of the energy effect (ef) and the ?-electron content (EC) of the six-membered rings. A regularity that was earlier discovered in the case of acenaphthylene and fluoranthene congeners is now shown to hold also for benzo-annelated triphenylenes: Benzenoid rings that are annelated angularly with regard to the central six-membered ring Z0 of triphenylene increase the intensity of the cyclic conjugation in Z0, whereas linearly annelated benzenoid rings decrease the cyclic conjugation in Z0. The efand EC-values are strongly correlated, yet in a non-linear manner.


1993 ◽  
Vol 07 (20n21) ◽  
pp. 3567-3596 ◽  
Author(s):  
M.P. Bellon ◽  
J-M. Maillard ◽  
C-M. Viallet

We describe a class of non-linear transformations acting on many variables. These transformations have their origin in the theory of quantum integrability: they appear in the description of the symmetries of the Yang-Baxter equations and their higher dimensional generalizations. They are generated by involutions and act as birational mappings on various projective spaces. We present numerous figures, showing successive iterations of these mappings. The existence of algebraic invariants explains the aspect of these figures. We also study deformations of our transformations.


1985 ◽  
Vol 253 ◽  
pp. 162-172 ◽  
Author(s):  
F. Alexander Bais ◽  
Peter Batenburg

Sign in / Sign up

Export Citation Format

Share Document