scholarly journals Closed string deformations in open string field theory. Part II. Superstring

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract This is the second paper of a series of three. We construct effective open-closed superstring couplings by classically integrating out massive fields from open superstring field theories coupled to an elementary gauge invariant tadpole proportional to an on-shell closed string state in both large and small Hilbert spaces, in the NS sector. This source term is well known in the WZW formulation and by explicitly performing a novel large Hilbert space perturbation theory we are able to characterize the first orders of the vacuum shift solution, its obstructions and the non-trivial open-closed effective couplings in closed form. With the aim of getting all order results, we also construct a new observable in the A∞ theory in the small Hilbert space which correctly provides a gauge invariant coupling to physical closed strings and which descends from the WZW open-closed coupling upon partial gauge fixing and field redefinition. Armed with this new A∞ observable we use tensor co-algebra techniques to efficiently package the whole perturbation theory necessary for computing the effective action and we give all order results for the open-closed effective couplings in the small Hilbert space.

2002 ◽  
Vol 536 (1-2) ◽  
pp. 129-137 ◽  
Author(s):  
Mohsen Alishahiha ◽  
Mohammad R. Garousi

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract In this paper, which is the last of a series including [1, 2] we first verify that the two open-closed effective potentials derived in the previous paper from the WZW theory in the large Hilbert space and the A∞ theory in the small Hilbert space have the same vacuum structure. In particular, we show that mass-term deformations given by the effective (open)2-closed couplings are the same, provided the effective tadpole is vanishing to first order in the closed string deformation. We show that this condition is always realized when the worldsheet BCFT enjoys a global $$ \mathcal{N} $$ N = 2 superconformal symmetry and the deforming closed string belongs to the chiral ring in both the holomorphic and anti-holomorphic sector. In this case it is possible to explicitly evaluate the mass deformation by localizing the SFT Feynman diagrams to the boundary of world-sheet moduli space, reducing the amplitude to a simple open string two-point function. As a non-trivial check of our construction we couple a constant Kalb-Ramond closed string state to the OSFT on the D3–D(−1) system and we show that half of the bosonic blowing-up moduli become tachyonic, making the system condense to a bound state whose binding energy we compute exactly to second order in the closed string deformation, finding agreement with the literature.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
H Kunimoto ◽  
T Sugimoto

Abstract We construct a complete type II superstring field theory that includes all the NS–NS, R–NS, NS–R, and R–R sectors. As in the open and heterotic superstring cases, the R–NS, NS–R, and R–R string fields are constrained by using the picture-changing operators. In particular, we use a non-local inverse picture-changing operator for the constraint on the R–R string field, which seems to be inevitable due to the compatibility of the extra constraint with the closed string constraints. The natural symplectic form in the restricted Hilbert space gives a non-local kinetic action for the R–R sector, but it correctly provides the propagator expected from the first-quantized formulation. Extending the prescription previously obtained for the heterotic string field theory, we give a construction of general type II superstring products, which realizes a cyclic $L_\infty$ structure, and thus provides a gauge-invariant action based on the homotopy algebraic formulation. Three typical four-string amplitudes derived from the constructed string field theory are demonstrated to agree with those in the first-quantized formulation. We also give the half-Wess–Zumino–Witten action defined in the medium Hilbert space whose left-moving sector is still restricted to the small Hilbert space.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Christoph Chiaffrino ◽  
Olaf Hohm ◽  
Allison F. Pinto

Abstract We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, using Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ashoke Sen

Abstract D-instanton world-volume theory has open string zero modes describing collective coordinates of the instanton. The usual perturbative amplitudes in the D-instanton background suffer from infra-red divergences due to the presence of these zero modes, and the usual approach of analytic continuation in momenta does not work since all open string states on a D-instanton carry strictly zero momentum. String field theory is well-suited for tackling these issues. However we find a new subtlety due to the existence of additional zero modes in the ghost sector. This causes a breakdown of the Siegel gauge, but a different gauge fixing consistent with the BV formalism renders the perturbation theory finite and unambiguous. At each order, this produces extra contribution to the amplitude besides what is obtained from integration over the moduli space of Riemann surfaces.


2004 ◽  
Vol 19 (38) ◽  
pp. 2857-2870 ◽  
Author(s):  
B. SATHIAPALAN

We extend an earlier proposal for a gauge-invariant description of off-shell open strings (at tree level), using loop variables, to off-shell closed strings (at tree level). The basic idea is to describe the closed string amplitudes as a product of two open string amplitudes (using the technique of Kawai, Lewellen and Tye). The loop variable techniques that were used earlier for open strings can be applied here mutatis mutandis. It is a proposal for a theory whose on-shell amplitudes coincide with those of the closed bosonic string in 26 dimensions. It is also gauge-invariant off-shell. As was the case with the open string, the interacting closed string looks like a free closed string thickened to a band.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract This is the first of a series of three papers on open string field theories based on Witten star product deformed with a gauge invariant open/closed coupling. This de- formation is a tree-level tadpole which destabilizes the initial perturbative vacuum. We discuss the existence of vacuum-shift solutions which cancel the tadpole and represent a new configuration where the initial D-brane system has adapted to the change in the closed string background. As an example we consider the bulk deformation which changes the compactification radius and, to first order in the deformation, we reproduce the shift in the mass of the open string KK modes from the new kinetic operator after the vacuum shift. We also discuss the possibility of taming closed string degenerations with the open string propagator in the simplest amplitude corresponding to two closed strings off a disk.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jacob Sonnenschein ◽  
Dorin Weissman

Abstract Classical rotating closed string are folded strings. At the folding points the scalar curvature associated with the induced metric diverges. As a consequence one cannot properly quantize the fluctuations around the classical solution since there is no complete set of normalizable eigenmodes. Furthermore in the non-critical effective string action of Polchinski and Strominger, there is a divergence associated with the folds. We overcome this obstacle by putting a massive particle at each folding point which can be used as a regulator. Using this method we compute the spectrum of quantum fluctuations around the rotating string and the intercept of the leading Regge trajectory. The results we find are that the intercepts are a = 1 and a = 2 for the open and closed string respectively, independent of the target space dimension. We argue that in generic theories with an effective string description, one can expect corrections from finite masses associated with either the endpoints of an open string or the folding points on a closed string. We compute explicitly the corrections in the presence of these masses.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract We uncover a Kawai-Lewellen-Tye (KLT)-type factorization of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The winding and momentum closed string quantum numbers map respectively to the integer and fractional winding quantum numbers of open strings ending on a D-brane array localized in the compactified directions. The closed string amplitudes factorize into products of open string scattering amplitudes with the open strings ending on a D-brane configuration determined by closed string data.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


Sign in / Sign up

Export Citation Format

Share Document