scholarly journals Classical observables from coherent-spin amplitudes

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Rafael Aoude ◽  
Alexander Ochirov

Abstract The quantum field-theoretic approach to classical observables due to Kosower, Maybee and O’Connell provides a rigorous pathway from on-shell scattering amplitudes to classical perturbation theory. In this paper, we promote this formalism to describe general classical spinning objects by using coherent spin states. Our approach is fully covariant with respect to the massive little group SU(2) and is therefore completely synergistic with the massive spinor-helicity formalism. We apply this approach to classical two-body scattering due gravitational interaction. Starting from the coherent-spin elastic-scattering amplitude, we derive the classical impulse and spin kick observables to first post-Minkowskian order but to all orders in the angular momenta of the massive spinning objects. From the same amplitude, we also extract an effective two-body Hamiltonian, which can be used beyond the scattering setting. As a cross-check, we rederive the classical observables in the center-of-mass frame by integrating the Hamiltonian equations of motion to the leading order in Newton’s constant.

1976 ◽  
Vol 14 (1) ◽  
pp. 189-192 ◽  
Author(s):  
F. T. Chan ◽  
C. H. Chang

2010 ◽  
Vol 09 (05) ◽  
pp. 935-943 ◽  
Author(s):  
PENG SONG ◽  
YONG-HUA ZHU ◽  
JIAN-YONG LIU ◽  
FENG-CAI MA

The stereodynamics of the title reaction on the ground electronic state X2A' potential energy surface (PES)1 has been studied using the quasiclassical trajectory (QCT) method. The commonly used polarization-dependent differential cross-sections (PDDCSs) of the product and the angular momentum alignment distribution, P(θr) and P(Φr), are generated in the center-of-mass frame using QCT method to gain insight of the alignment and orientation of the product molecules. Influence of collision energy on the stereodynamics is shown and discussed. The results reveal that the distribution of P(θr) and P(Φr) is sensitive to collision energy. The PDDCSs exhibit different collision energy dependency relationship at low and high collision energy ranges.


2011 ◽  
Vol 08 (03) ◽  
pp. 511-556 ◽  
Author(s):  
GIUSEPPE BANDELLONI

The relativistic symmetric tensor fields are, in four dimensions, the right candidates to describe Higher Spin Fields. Their highest spin content is isolated with the aid of covariant conditions, discussed within a group theory framework, in which auxiliary fields remove the lower intrinsic angular momenta sectors. These conditions are embedded within a Lagrangian Quantum Field theory which describes an Higher Spin Field interacting with a Classical background. The model is invariant under a (B.R.S.) symmetric unconstrained tensor extension of the reparametrization symmetry, which include the Fang–Fronsdal algebra in a well defined limit. However, the symmetry setting reveals that the compensator field, which restore the Fang–Fronsdal symmetry of the free equations of motion, is in the existing in the framework and has a relevant geometrical meaning. The Ward identities coming from this symmetry are discussed. Our constraints give the result that the space of the invariant observables is restricted to the ones constructed with the Highest Spin Field content. The quantum extension of the symmetry reveals that no new anomaly is present. The role of the compensator field in this result is fundamental.


2021 ◽  
Vol 84 (1) ◽  
pp. 59-62
Author(s):  
M. N. Achasov ◽  
A. Yu. Barnyakov ◽  
M. Yu. Barnyakov ◽  
K. I. Beloborodov ◽  
A. V. Berdyugin ◽  
...  

2017 ◽  
Vol 53 (8) ◽  
Author(s):  
Yanyu Ren ◽  
Qichun Feng ◽  
Weining Zhang ◽  
Lei Huo ◽  
Jingbo Zhang ◽  
...  
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


Author(s):  
G. Antchev ◽  
P. Aspell ◽  
I. Atanassov ◽  
V. Avati ◽  
J. Baechler ◽  
...  

Abstract The TOTEM experiment at the LHC has performed the first measurement at $$\sqrt{s} = 13\,\mathrm{TeV}$$s=13TeV of the $$\rho $$ρ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $$t=0$$t=0, obtaining the following results: $$\rho = 0.09 \pm 0.01$$ρ=0.09±0.01 and $$\rho = 0.10 \pm 0.01$$ρ=0.10±0.01, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $$\rho $$ρ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than $$10\,\mathrm{TeV}$$10TeV (from 2.76 to $$13\,\mathrm{TeV}$$13TeV), has implied the exclusion of all the models classified and published by COMPETE. The $$\rho $$ρ results obtained by TOTEM are compatible with the predictions, from other theoretical models both in the Regge-like framework and in the QCD framework, of a crossing-odd colourless 3-gluon compound state exchange in the t-channel of the proton–proton elastic scattering. On the contrary, if shown that the crossing-odd 3-gluon compound state t-channel exchange is not of importance for the description of elastic scattering, the $$\rho $$ρ value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-|t| reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton–proton cross-section measurement $$\sigma _{\mathrm{tot}} = (110.3 \pm 3.5)\,\mathrm{mb}$$σtot=(110.3±3.5)mb, completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $$\sigma _{\mathrm{tot}} = (110.5 \pm 2.4)\,\mathrm{mb}$$σtot=(110.5±2.4)mb.


1971 ◽  
Vol 26 (11) ◽  
pp. 1926-1928 ◽  
Author(s):  
W. E. Köhler

The magnetic Senftleben-Beenakker effect of the viscosity is mainly determined by two collision integrals of the linearized quantum mechanical Waldmann-Snider collision term, viz. by the relaxation coefficient of the tensor polarization of the molecular rotational angular momenta and by the coefficient which couples the friction pressure tensor and the tensor polarization. Starting from a simple nonspherical potential for HD, the scattering amplitude is evaluated analytically in first order distorted wave Born approximation and the two collision integrals are calculated for room temperature. A fairly good agreement with experimental values is found.


Sign in / Sign up

Export Citation Format

Share Document