scholarly journals Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract In this paper, a new technique for reconstructing and identifying hadronically decaying τ+τ− pairs with a large Lorentz boost, referred to as the di-τ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-τ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $$ b\overline{b} $$ b b ¯ pair and the other into a boosted τ+τ− pair, with two hadronically decaying τ-leptons in the final state. Using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-τ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-τ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon-gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1–3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

2021 ◽  
Vol 81 (3) ◽  
Author(s):  
R. Aaij ◽  
◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

AbstractA search is performed for heavy neutrinos in the decay of a W boson into two muons and a jet. The data set corresponds to an integrated luminosity of approximately $$3.0\, \text {fb} ^{-1} $$ 3.0 fb - 1 of proton–proton collision data at centre-of-mass energies of 7 and $$8\, \text {TeV} $$ 8 TeV collected with the LHCb experiment. Both same-sign and opposite-sign muons in the final state are considered. Data are found to be consistent with the expected background. Upper limits on the coupling of a heavy neutrino with the Standard Model neutrino are set at $$95\%$$ 95 % confidence level in the heavy-neutrino mass range from 5 to $$50\, \text {GeV/}c^2 $$ 50 GeV/ c 2 . These are of the order of $$10^{-3}$$ 10 - 3 for lepton-number-conserving decays and of the order of $$10^{-4}$$ 10 - 4 for lepton-number-violating heavy-neutrino decays.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1, collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H → aa → μμττ, and considers pseudoscalar masses in the range 3.6 < ma< 21 GeV. Because of the large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the μμ and the ττ pairs have high Lorentz boost and are collimated. The ττ reconstruction efficiency is increased by modifying the standard technique for hadronic τ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of ma, on the branching fraction (ℬ) for H → aa → μμττ, down to 1.5 (2.0) × 10−4 for mH = 125 (300) GeV. Model-dependent limits on ℬ(H → aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV.


2018 ◽  
Vol 182 ◽  
pp. 02119
Author(s):  
Liaoshan Shi

In this report, we present the latest ATLAS results on the measurement of the cross sections and couplings of the Higgs boson in the fermionic decay modes, H → μ+μ-, H → τ+τ- and H → bb. The searches are performed with proton-proton collision data delivered by the Large Hadron Collider during Run 1 and the first two years of Run 2 at √s = 7, 8 and 13 TeV.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractInclusive and differential fiducial cross sections of the Higgs boson are measured in the $$H \rightarrow ZZ^{*} \rightarrow 4\ell $$ H → Z Z ∗ → 4 ℓ ($$\ell = e,\mu $$ ℓ = e , μ ) decay channel. The results are based on proton−proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 $$\hbox {fb}^{-1}$$ fb - 1 . The inclusive fiducial cross section for the $$H \rightarrow ZZ^{*} \rightarrow 4\ell $$ H → Z Z ∗ → 4 ℓ process is measured to be $$\sigma _\mathrm {fid} = 3.28 \pm 0.32$$ σ fid = 3.28 ± 0.32  fb, in agreement with the Standard Model prediction of $$\sigma _\mathrm {fid, SM} = 3.41 \pm 0.18 $$ σ fid , SM = 3.41 ± 0.18  fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV, corresponding to $$ 139\,{\text {fb}}^{-1} $$ 139 fb - 1 of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on the final state with two light leptons (electrons or muons) of different flavour and charge combinations, with at least two jets and large missing transverse momentum. No significant excess over the Standard Model expectation is observed. The results are translated into exclusion limits on heavy-lepton masses, and the observed lower limit on the mass of the type-III seesaw heavy leptons is 790 GeV at 95% confidence level.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractThe results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ($$\tilde{\chi }^0_1$$ χ ~ 1 0 ), and quarks, are presented: the signal is characterised by the presence of a single charged lepton ($$e^{\pm }$$ e ± or $$\mu ^{\pm }$$ μ ± ) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$$^{-1}$$ - 1 of proton–proton collision data taken at a centre-of-mass energy $$\sqrt{s}=13$$ s = 13   delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2  (1.4 ) are excluded at 95% confidence level for a light $$\tilde{\chi }^0_1$$ χ ~ 1 0 .


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses 139 fb−1 of proton-proton collision data collected at $$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract Evidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC. An excess of events over the back- ground expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at $$ \sqrt{s} $$ s = 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb−1, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is $$ {1.19}_{-0.39}^{+0.40}{\left(\mathrm{stat}\right)}_{-0.14}^{+0.15}\left(\mathrm{syst}\right) $$ 1.19 − 0.39 + 0.40 stat − 0.14 + 0.15 syst . This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
R. Aaij ◽  
◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

Abstract A search for the doubly heavy $$ {\Xi}_{bc}^0 $$ Ξ bc 0 baryon using its decay to the D0pK– final state is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment between 2016 and 2018, corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found in the invariant mass range from 6.7 to 7.2 GeV/c2. Upper limits are set at 95% credibility level on the ratio of the $$ {\Xi}_{bc}^0 $$ Ξ bc 0 production cross-section times its branching fraction to D0pK− relative to that of the $$ {\Lambda}_b^0\to {D}^0{pK}^{-} $$ Λ b 0 → D 0 pK − decay. The limits are set as a function of the $$ {\Xi}_{bc}^0 $$ Ξ bc 0 mass and lifetime hypotheses, in the rapidity range from 2.0 to 4.5 and in the transverse momentum region from 5 to 25 GeV/c. Upper limits range from 1.7 × 10−2 to 3.0 × 10−1 for the considered $$ {\Xi}_{bc}^0 $$ Ξ bc 0 mass and lifetime hypotheses.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anna Mullin ◽  
Stuart Nicholls ◽  
Holly Pacey ◽  
Michael Parker ◽  
Martin White ◽  
...  

Abstract We present a novel technique for the analysis of proton-proton collision events from the ATLAS and CMS experiments at the Large Hadron Collider. For a given final state and choice of kinematic variables, we build a graph network in which the individual events appear as weighted nodes, with edges between events defined by their distance in kinematic space. We then show that it is possible to calculate local metrics of the network that serve as event-by-event variables for separating signal and background processes, and we evaluate these for a number of different networks that are derived from different distance metrics. Using a supersymmetric electroweakino and stop production as examples, we construct prototype analyses that take account of the fact that the number of simulated Monte Carlo events used in an LHC analysis may differ from the number of events expected in the LHC dataset, allowing an accurate background estimate for a particle search at the LHC to be derived. For the electroweakino example, we show that the use of network variables outperforms both cut-and-count analyses that use the original variables and a boosted decision tree trained on the original variables. The stop example, deliberately chosen to be difficult to exclude due its kinematic similarity with the top background, demonstrates that network variables are not automatically sensitive to BSM physics. Nevertheless, we identify local network metrics that show promise if their robustness under certain assumptions of node-weighted networks can be confirmed.


Sign in / Sign up

Export Citation Format

Share Document