scholarly journals Holographic and QFT complexity with angular momentum

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Alice Bernamonti ◽  
Francesco Bigazzi ◽  
Davide Billo ◽  
Lapo Faggi ◽  
Federico Galli

Abstract We study the influence of angular momentum on quantum complexity for CFT states holographically dual to rotating black holes. Using the holographic complexity=action (CA) and complexity=volume (CV) proposals, we study the full time dependence of complexity and the complexity of formation for two dimensional states dual to rotating BTZ. The obtained results and their dependence on angular momentum turn out to be analogous to those of charged states dual to Reissner-Nordström AdS black holes. For CA, our computation carefully accounts for the counterterm in the gravity action, which was not included in previous analysis in the literature. This affects the complexity early time dependence and its effect becomes negligible close to extremality. In the grand canonical ensemble, the CA and CV complexity of formation are linear in the temperature, and diverge with the same structure in the speed of light angular velocity limit. For CA the inclusion of the counterterm is crucial for both effects. We also address the problem of studying holographic complexity for higher dimensional rotating black holes, focusing on the four dimensional Kerr-AdS case. Carefully taking into account all ingredients, we show that the late time limit of the CA growth rate saturates the expected bound, and find the CV complexity of formation of large black holes diverges in the critical angular velocity limit. Our holographic analysis is complemented by the study of circuit complexity in a two dimensional free scalar model for a thermofield double (TFD) state with angular momentum. We show how this can be given a description in terms of non-rotating TFD states introducing mode-by-mode effective temperatures and times. We comment on the similarities and differences of the holographic and QFT complexity results.

2006 ◽  
Vol 21 (35) ◽  
pp. 2621-2635 ◽  
Author(s):  
JUTTA KUNZ ◽  
FRANCISCO NAVARRO-LÉRIDA

Stationary black holes in five-dimensional Einstein–Maxwell–Chern–Simons theory possess surprising properties. When considering the Chern–Simons coefficient λ as a parameter, two critical values of λ appear: the supergravity value λ SG = 1, and the value λ = 2. At λ = 1, supersymmetric black holes with vanishing horizon angular velocity, but finite angular momentum exist. As λ increases beyond λ SG a rotational instability arises, and counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. Thus supersymmetry is associated with the borderline between stability and instability. At λ = 2, rotating black holes with vanishing angular momentum emerge. Beyond λ = 2, black holes may possess a negative horizon mass, while their total mass is positive. Charged rotating black holes with vanishing gyromagnetic ratio appear, and black holes are no longer uniquely characterized by their global charges.


2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.


2007 ◽  
Vol 22 (26) ◽  
pp. 4849-4858 ◽  
Author(s):  
A. SHEYKHI ◽  
N. RIAZI

We consider charged black holes with curved horizons, in five-dimensional dilaton gravity in the presence of Liouville-type potential for the dilaton field. We show how, by solving a pair of coupled differential equations, infinitesimally small angular momentum can be added to these static solutions to obtain charged rotating dilaton black hole solutions. In the absence of dilaton field, the nonrotating version of the solution reduces to the five-dimensional Reissner–Nordström black hole, and the rotating version reproduces the five-dimensional Kerr–Newman modification thereof for small rotation parameter. We also compute the angular momentum and the angular velocity of these rotating black holes which appear at the first order.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. H. Hendi ◽  
M. Allahverdizadeh

We study charged slowly rotating black hole with a nonlinear electrodynamics (NED) in the presence of cosmological constant. Starting from the static solutions of Einstein-NED gravity as seed solutions, we use the angular momentum as the perturbative parameter to obtain slowly rotating black holes. We perform the perturbations up to the linear order for black holes in 4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameteraas well as the nonlinearity parameterβ. In the limitβ→∞, the solution describes slowly rotating AdS type black holes.


Author(s):  
F. Tamburini ◽  
F. Feleppa ◽  
B. Thidé

We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test general relativity.


2012 ◽  
Vol 21 (08) ◽  
pp. 1250068 ◽  
Author(s):  
ALEXIS LARRAÑAGA

In this paper, we analyze the area spectrum of BTZ three-dimensional black holes by considering an outgoing wave and relating its period of motion with the period of the gravitational system with respect to Euclidean time. The area spectra obtained for the rotating and non-rotating black holes are equally spaced and it is important to note that in this paper, we do not need to use the small angular momentum assumption which is necessary in the quasinormal mode approach for rotating black holes. The results suggest that the periodicity of the black hole gravitational system may be the origin of area quantization.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Seyed Morteza Hosseini ◽  
Kiril Hristov ◽  
Yuji Tachikawa ◽  
Alberto Zaffaroni

Abstract We derive the general anomaly polynomial for a class of two-dimensional CFTs arising as twisted compactifications of a higher-dimensional theory on compact manifolds ℳd, including the contribution of the isometries of ℳd. We then use the result to per- form a counting of microstates for electrically charged and rotating supersymmetric black strings in AdS5× S5 and AdS7× S4 with horizon topology BTZt⋉S2 and BTZt⋉S2×$$ {\Sigma}_{\mathfrak{g}} $$ Σ g , respectively, where $$ {\Sigma}_{\mathfrak{g}} $$ Σ g is a Riemann surface. We explicitly construct the latter class of solutions by uplifting a class of four-dimensional rotating black holes. We provide a microscopic explanation of the entropy of such black holes by using a charged version of the Cardy formula.


Sign in / Sign up

Export Citation Format

Share Document