scholarly journals Radiated momentum in the post-Minkowskian worldline approach via reverse unitarity

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Massimiliano Maria Riva ◽  
Filippo Vernizzi

Abstract We compute the four-momentum radiated during the scattering of two spinless bodies, at leading order in the Newton’s contant G and at all orders in the velocities, using the Effective Field Theory worldline approach. Following [1], we derive the conserved stress-energy tensor linearly coupled to gravity generated by localized sources, at leading and next-to-leading order in G, and from that the classical probability amplitude of graviton emission. The total emitted momentum is obtained by phase-space integration of the graviton momentum weighted by the modulo squared of the radiation amplitude. We recast this as a two-loop integral that we solve using techniques borrowed from particle physics, such as reverse unitarity, reduction to master integrals by integration-by-parts identities and canonical differential equations. The emitted momentum agrees with recent results obtained by other methods. Our approach provides an alternative way of directly computing radiated observables in the post-Minkowskian expansion without going through the classical limit of scattering amplitudes.

2017 ◽  
Vol 45 ◽  
pp. 1760004 ◽  
Author(s):  
Alcides Garat

A new tetrad is introduced within the framework of geometrodynamics for non-null electromagnetic fields. This tetrad diagonalizes the electromagnetic stress-energy tensor and allows for maximum simplification of the expression of the electromagnetic field. The Einstein-Maxwell equations will also be simplified. New group isomorphisms are proved. The local group of electromagnetic gauge transformations is isomorphic to the new group LB1. LB1 is the group of local tetrad transformations comprised by SO(1,1) plus two different kinds of discrete transformations. The local group of electromagnetic gauge transformations is also isomorphic to the local group of tetrad transformations LB2, which is SO(2), as well. Therefore, we proved that LB1 is isomorphic to LB2. These group results amount to proving that the no-go theorems of the sixties like the S. Coleman- J. Mandula, the S. Weinberg or L. ORaifeartagh versions are incorrect. Not because of their internal logic, but because of the assumptions made at the outset of all these versions. These new tetrads are useful in astrophysics spacetime evolution algorithms since they introduce maximum simplification in all relevant objects, specially in stress-energy tensors.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hanno Bertle ◽  
Andrea Dei ◽  
Matthias R. Gaberdiel

Abstract The large N limit of symmetric orbifold theories was recently argued to have an AdS/CFT dual world-sheet description in terms of an sl(2, ℝ) WZW model. In previous work the world-sheet state corresponding to the symmetric orbifold stress-energy tensor was identified. We calculate certain 2- and 3-point functions of the corresponding vertex operator on the world-sheet, and demonstrate that these amplitudes reproduce exactly what one expects from the dual symmetric orbifold perspective.


1996 ◽  
Vol 11 (27) ◽  
pp. 2171-2177
Author(s):  
A.N. ALIEV

The electromagnetic perturbations propagating in the multiconical spacetime of N parallel cosmic strings are described. The expression for vacuum average of the stress-energy tensor is reduced to a form involving only zero-spin-weighted perturbation modes.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Jung-Wook Kim

Abstract In this paper, we demonstrate that at leading order in post Minkowskian (PM) expansion, the stress-energy tensor of Kerr-Newman black hole can be recovered to all orders in spin from three sets of minimal coupling: the electric and gravitational minimal coupling for higher-spin particles, and the “minimal coupling” for massive spin-2 decay. These couplings are uniquely defined from kinematic consideration alone. This is shown by extracting the classical piece of the one-loop stress-energy tensor form factor, which we provide a basis that is valid to all orders in spin. The 1 PM stress tensor, and the metric in the harmonic gauge, is then recovered from the classical spin limit of the form factor.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2015 ◽  
Vol 58 (1) ◽  
pp. 89-108 ◽  
Author(s):  
Victor E. Ambrus ◽  
Robert Blaga

Abstract We consider an application of the tetrad formalism introduced by Cardall et al. [Phys. Rev. D 88 (2013) 023011] to the problem of a rigidly rotating relativistic gas in thermal equilibrium and discuss the possible applications of this formalism to rel- ativistic lattice Boltzmann simulations. We present in detail the transformation to the comoving frame, the choice of tetrad, as well as the explicit calculation and analysis of the components of the equilibrium particle ow four-vector and of the equilibrium stress-energy tensor.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Laura Donnay ◽  
Romain Ruzziconi

Abstract Starting from gravity in asymptotically flat spacetime, the BMS momentum fluxes are constructed. These are non-local expressions of the solution space living on the celestial Riemann surface. They transform in the coadjoint representation of the extended BMS group and correspond to Virasoro primaries under the action of bulk superrotations. The relation between the BMS momentum fluxes and celestial CFT operators is then established: the supermomentum flux is related to the supertranslation operator and the super angular momentum flux is linked to the stress-energy tensor of the celestial CFT. The transformation under the action of asymptotic symmetries and the OPEs of the celestial CFT currents are deduced from the BMS flux algebra.


Sign in / Sign up

Export Citation Format

Share Document