scholarly journals New boundary conditions for AdS2

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Victor Godet ◽  
Charles Marteau

Abstract We describe new boundary conditions for AdS2 in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to Diff(S1) ⋉ C∞(S1) whose breaking to SL(2, ℝ) × U(1) controls the near-AdS2 dynamics. The action reduces to a boundary term which is a generalization of the Schwarzian theory and can be interpreted as the coadjoint action of the warped Virasoro group. This theory reproduces the low-energy effective action of the complex SYK model. We compute the Euclidean path integral and derive its relation to the random matrix ensemble of Saad, Shenker and Stanford. We study the flat space version of this action, and show that the corresponding path integral also gives an ensemble average, but of a much simpler nature. We explore some applications to near-extremal black holes.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hamid Afshar ◽  
Erfan Esmaeili ◽  
H. R. Safari

Abstract We present an interacting spin-2 gauge theory coupled to the two-dimensional dilaton-gravity in flat spacetime. The asymptotic symmetry group is enhanced to the central extension of Diff(S1)⋉C∞(S1)⋉Vec(S1) when the central element of the Heisenberg subgroup is zero (vanishing U(1) level). Using the BF-formulation of the model we derive the corresponding boundary coadjoint action which is the spin-2 extension of the warped Schwarzian theory at vanishing U(1) level. We also discuss the thermodynamics of black holes in this model.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Victor Godet ◽  
Charles Marteau

Abstract We study $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ gravity, a variant of the matterless Callan-Giddings-Harvey-Strominger model. We show that it describes a universal sector of the near horizon perturbations of non-extremal black holes in higher dimensions. In many respects this theory can be viewed as a flat space analog of Jackiw-Teitelboim gravity. The result for the Euclidean path integral implies that $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ is dual to a Gaussian ensemble that we describe in detail. The simplicity of this theory allows us to compute exact quantities such as the quenched free energy and provides a useful playground to study baby universes, averages and factorization. In particular we derive a “wormhole = diagonal” identity. We also give evidence for the existence of a non-perturbative completion in terms of a matrix model. Finally, flat wormhole solutions in this model are discussed.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


1999 ◽  
Vol 40 (6) ◽  
pp. 2549-2559 ◽  
Author(s):  
Bernhard Bodmann ◽  
Hajo Leschke ◽  
Simone Warzel

1990 ◽  
Vol 68 (1) ◽  
pp. 96-103 ◽  
Author(s):  
T. F. Treml

The non-Abelian chiral anomaly for a fermion interacting with an external vector field in any even dimension and the conformal anomaly, in the limit of flat space–time, for a self-interacting scalar field are shown to be independent of temperature using a simple path-integral approach that employs dimensional regularization. The chiral anomaly is used as an example to show that the methods used to study the dimensionally regularized anomaly at finite temperature are readily transferable to the case of ζ-function regularization. The conformal anomaly in (super) string theory at finite temperature is briefly discussed in the light of known results. Some subtleties concerning the use of infrared cutoffs in a dimensionally regularized approach to the computation of the one-loop effective action at finite temperature are considered in an appendix.


Sign in / Sign up

Export Citation Format

Share Document