Biostratigraphy and seismic data analysis to detect the sequence stratigraphic depositional environment of the Miocene succession: Gulf of Suez (Egypt)

2017 ◽  
Vol 110 (3) ◽  
pp. 777-791
Author(s):  
Ahmed Abd El Naby ◽  
Wafaa Abd-Elaziz ◽  
Mohamed Hamed Abdel Aal
GeoArabia ◽  
1997 ◽  
Vol 2 (2) ◽  
pp. 179-202 ◽  
Author(s):  
Sabah K. Aziz ◽  
Mohamed M. Abd El-Sattar

ABSTRACT The Lower Cretaceous (Berriasian to Valanginian) Habshan Formation (Lower Thamama Group) of Abu Dhabi was deposited on a broad carbonate shelf. In east onshore Abu Dhabi, the Habshan Formation consists mainly of limestone and dolomite reaching a thickness of more than 1,100 feet. The depositional environment ranged from shallow-water peritidal to deeper shelf basin. The integration of seismic-stratigraphic, biostratigraphic, lithostratigraphic and electric log data reveals three sequences (I to III) and three shelf edges within the Habshan Formation in east onshore Abu Dhabi. These high energy shelfal sediments prograde toward the basin to the east and northeast with their shelf edges trending north-northwest to south-southeast. The seismic data indicates that the basin was filled in the east during the Hauterivian, after the deposition of Sequence IV (equivalent to the Zakum formation). Good reservoir development is found in the carbonates deposited in the high energy environment along the shelf edge of the Habshan sequence, particularly within the oblique and sigmoidal clinoforms, whereas potential source rocks are expected to be developed basinward. This combination renders the Habshan and Zakum sequences an attractive exploration target, both as structural and stratigraphic traps. Recent exploration activity in the area established the presence of hydrocarbons within the Habshan Sequence III in east onshore Abu Dhabi.


Author(s):  
E. A. Rosa

The study area is physiographically part of the Barito Basin, South Kalimantan (Van Bemmelen, 1949). 2D seismic data along with well logs from three wells, biostratigraphy data from two wells, and core data are utilized to do an integrated sequence stratigraphy. Petrography data from the equivalent formation at well-X from the study area is also used to support the evaluation. This study was to determine lithology facies and depositional environment based on several key maps: Sand Shale Ratio (SSR), Isopach, and Paleogeographic Maps. After that, seismically-supported sequence stratigraphy was applied to vertically and laterally subdivide the facies distribution and paleogeography into two depositional models based on the following key sequence-stratigraphic markers: (1) Sequence Boundary (SB)-1 to SB-2 that show regressive succession, and (2) SB-2 to Top Tanjung Formation that reflects transgressive phase.


2021 ◽  
Vol 11 (3) ◽  
pp. 1226
Author(s):  
Abd Al-Salam Al-Masgari ◽  
Mohamed Elsaadany ◽  
Abdul Halim Abdul Latiff ◽  
Maman Hermana ◽  
Umar Bin Hamzah ◽  
...  

This study focuses on the sequence stratigraphy and the dominated seismic facies in the Central Taranaki basin. Four regional seismic sequences namely SEQ4 to SEQ1 from bottom to top and four boundaries representing unconformities namely H4 to H1 from bottom to top have been traced based on the reflection terminations. This was validated using well logs information. An onlapping feature on the seismic section indicates a new perspective surface separated between the upper and lower Giant formation, which indicates a period of seawater encroachment. This study focused extensively on deposition units from SEQ4 to SEQ1. The seismic facies, isochron map, and depositional environment were determined, and the system tract was established. This study was also able to propose a new perspective sequence stratigraphy framework of the basin and probable hydrocarbon accumulations and from the general geological aspect, SA-Middle Giant Formation (SEQ3) could act as potential traps.


2014 ◽  
Author(s):  
Mohamed S El-Hateel ◽  
Parvez Ahmad ◽  
Ahmed Hesham A Ismail ◽  
Islam A M Henaish ◽  
Ahmed Ashraf

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rizki Satria Rachman ◽  
Winantris ◽  
Budi Muljana

AbstractWalat Formation is equivalent to Bayah Formation. This formation is the beginning of Bogor basin deposition. In this case, age and environment of this formation have been analyzed by previous researchers, but the results of age and environment interpretations have different ranges, especially from its palynological aspect which until now Walat Formation is rarely analyzed using this aspect. This research was conducted to identify the age and depositional environment of Walat Formation in Sukabumi region by using pollen and spores to confirm different interpretations of previous studies. Measure section was carried out in sampling and chemical treatment method was carried out to see palynomorph content in the rock. Furthermore, data analysis was carried out with range of interval zones and pollen grouping based on their environment.The results show that Walat Formation has Late Eocene age based on the interval zone between first occurrence of Verrucatosporites usmensis and Meyeripollis naharkotensis, and the last occurence of Proxapertites operculatus, Proxapertites cursus, and Cicatricosisporites eocenicus. Walat Formation has fluvial depositional environment characterized by the dominance of Proxapertites operculatus and Proxapertites cursus. The results of this study confirm that the Walat Formation has an Eocene age and a fluvial depositional environment from a palinological aspect.


Author(s):  
Onyewuchi, Chinedu Vin ◽  
Minapuye, I. Odigi

Facies analysis and depositional environment identification of the Vin field was evaluated through the integration and comparison of results from wireline logs, core analysis, seismic data, ditch cutting samples and petrophysical parameters. Well log suites from 22 wells comprising gamma ray, resistivity, neutron, density, seismic data, and ditch cutting samples were obtained and analyzed. Prediction of depositional environment was made through the usage of wireline log shapes of facies combined with result from cores and ditch cuttings sample description. The aims of this study were to identify the facies and depositional environments of the D-3 reservoir sand in the Vin field. Two sets of correlations were made on the E-W trend to validate the reservoir top and base while the isopach map was used to establish the reservoir continuity. Facies analysis was carried out to identify the various depositional environments. The result showed that the reservoir is an elongate , four way dip closed roll over anticline associated with an E-W trending growth fault and contains two structural high separated by a saddle. The offshore bar unit is an elongate sand body with length: width ratio of >3:1 and is aligned parallel to the coast-line. Analysis of the gamma ray logs indicated that four log facies were recognized in all the wells used for the study. These include: Funnel-shaped (coarsening upward sequences), bell-shaped or fining upward sequences, the bow shape and irregular shape. Based on these categories of facies, the depositional environments were interpreted as deltaic distributaries, regressive barrier bars, reworked offshore bars and shallow marine. Analysis of the wireline logs and their core/ditch cuttings description has led to the conclusion that the reservoir sandstones of the Agbada Formation in the Vin field of the eastern Niger Delta is predominantly marine deltaic sequence, strongly influenced by clastic output from the Niger Delta. Deposition occurred in a variety of littoral and neritic environment ranging from barrier sand complex to fully marine outer shelf mudstones.


2021 ◽  
pp. SP509-2021-51
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

AbstractImproved seismic data quality in the last 10–15 years, innovative use of seismic attribute combinations, extraction of geomorphological data, and new quantitative techniques, have significantly enhanced understanding of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies and associated flow units and barriers, giving a unique perspective how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, paleoenvironmental and sequence stratigraphic interpretations. Geologists can now characterise entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cretaceous Central Atlantic “Pre-Salt” carbonates. The papers introduced in this review illustrate opportunities, workflows, and potential pitfalls of modern carbonate seismic interpretation. They demonstrate advances in knowledge of carbonate systems achieved when geologists and geophysicists collaborate and innovate to maximise the value of seismic data from acquisition, through processing to interpretation. Future trends and developments, including machine learning and the significance of the energy transition, are briefly discussed.


2021 ◽  
pp. 1-30
Author(s):  
Alan H. Silliman ◽  
Rick Schrynemeeckers

Salt is one of the most effective agents for trapping oil and gas. As a ductile material it can move and deform surrounding sediments and create traps. However, effective sealing of reservoirs for movement of hydrocarbons along breaching faults or fracture swarms (i.e. macroseepage) is a completely different mechanism than the molecular movement of hydrocarbons through grain boundaries and microfractures as found in microseepage. Forum Exploration chose to evaluate the applicability of passive surface geochemistry for mapping hydrocarbons in their onshore West Gebel El Zeit lease due to difficulties in seismic imaging through salt and anhydrites sequences. Two economic producing wells had been drilled in the lease, but due to compartmentalization and complexity in the area, three dry wells had also been drilled. Target formations included the Kareem Formation at ∼2,700 m and the Rudeis Formation at ∼3,000 m.The geochemical survey encompassed 100 passive geochemical modules. Passive samplers were also deployed around two producing wells and one dry well. Calibration data generated positive thermogenic signatures around the two producing wells in contrast to the background or baseline signature developed around the dry well. The Rudeis Formation calibration signature ranged from ∼nC5 - ∼nC9 while the Kareem Formation calibration signature ranged from ∼nC6 – nC12. This suggested the Rudeis calibration signature was lighter than the Kareem. This correlated with independent API gravity testing on produced oil samples (41o API gravity oil for the Rudeis, 35o API gravity oil for the Kareem).A post-survey well, Fh85-8, was drilled based on combined geochemical and seismic data results. The well was an oil discovery, with initial production of 800 BOPD. The evidence presented in this Gulf of Suez example shows that microseepage can occur through salt sequences. As such, ultrasensitive passive surface geochemical surveys provide a powerful tool for derisking salt plays.


Author(s):  
M.S. El-Hateel ◽  
P. Ahmad ◽  
A.H.A. Ismail ◽  
I.A.M. Henaish ◽  
A. Ashraf

Sign in / Sign up

Export Citation Format

Share Document