Scaling Relationships of Source Parameters of Inland Crustal Earthquakes in Tectonically Active Regions

2019 ◽  
Vol 177 (5) ◽  
pp. 1917-1929 ◽  
Author(s):  
Ken Miyakoshi ◽  
Kazuhiro Somei ◽  
Kunikazu Yoshida ◽  
Susumu Kurahashi ◽  
Kojiro Irikura ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
José Ángel López-Comino ◽  
Thomas Braun ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Stefania Danesi

On October 27, 2017, an Mw 4 earthquake occurred close to the municipality of Montesano sulla Marcellana, less than 10 km external to the concession of the largest European onshore hydrocarbon reservoir—the Val d’Agri oilfield (Southern Italy). Being a weak event located outside the extended monitoring domain of the industrial concession, the relevance of this earthquake and the possible links with the hydrocarbon exploitation were not extensively discussed. Actually, the analysis of shallow seismic events close to subsurface exploitation domains plays a significant role in the definition of key parameters in order to discriminate between natural, triggered, and induced seismicity, especially in tectonically active regions. The study of weak-to-moderate earthquakes can improve the characterization of the potentially destructive seismic hazard of this particular area, already struck by M > 6.5 episodes in the past. In this work, we analyze the source parameters of this Mw 4 earthquake by applying advanced seismological techniques to estimate the uncertainties derived from the moment tensor inversion and identify plausible directivity effects. The moment tensor is dominated by a NW–SE oriented normal faulting with a centroid depth of 14 km. A single ML 2.1 aftershock was recorded and used as the empirical Green’s function to calculate the apparent source time function for the mainshock. Apparent durations (in the range 0.11–0.21 s, obtained from S-waves) define an azimuthal pattern, which reveals an asymmetric bilateral rupture with 70% of the rupture propagation in the N310°W direction, suggesting a rupture plane dipping to the SW. Our results tally with the activation of a deeper fault segment associated with the Eastern Agri Fault System close to the basement as the origin of the Montesano earthquake. Finally, the Coulomb stress rate induced by depletion of the oilfield is calculated to quantify the trigger potential estimated for the Montesano earthquake yielding relatively low probabilities below 10%. Our analyses point toward the conclusion that the Mw 4 event was more likely due to the local natural tectonic stress, rather than induced or triggered by the long-term hydrocarbon extraction in the Val d’Agri oilfield.


2020 ◽  
Author(s):  
Yuri Fialko

Abstract Strength of the upper brittle part of the Earth's lithosphere controls deformation styles in tectonically active regions, surface topography, seismicity, and the occurrence of plate tectonics, yet it remains one of the least constrained and most debated quantities in geophysics. Seismic data (in particular, earthquake focal mechanisms) have been used to infer orientation of the principal stress axes. Here I show that the focal mechanism data can be combined with information from precise earthquake locations to place robust constraints not only on the orientation, but also on the magnitude of absolute stress at depth. The proposed method uses machine learning to identify quasi-linear clusters of seismicity associated with active faults. A distribution of the relative attitudes of conjugate faults carries information about the amplitude and spatial heterogeneity of the deviatoric stress and frictional strength in the seismogenic zone. The observed diversity of dihedral angles between conjugate faults in the Ridgecrest (California, USA) area that hosted a recent sequence of strong earthquakes suggests the effective coefficient of friction of 0.4-0.6, and depth-averaged shear stresses on the order of 25-40 MPa, intermediate between predictions of the "strong" and "weak" fault theories.


1981 ◽  
Vol 71 (4) ◽  
pp. 1173-1190
Author(s):  
Arthur Frankel

abstract The seismic moments and stress drops of 23 earthquakes (1.1 ≦ M ≦ 2.4) that occurred during an earthquake swarm in the Virgin Islands were determined from the analysis of their P waveforms. The data consist of digitally recorded seismograms collected by a short-period seismic network operating in the northeastern Caribbean. The events of the swarm are particularly useful for comparing the relative stress drops of small earthquakes, because their source to receiver paths and focal mechanisms are very similar. The static stress drops calculated for these earthquakes varied from about 0.2 to 2 bars. The data clearly illustrate that the static and dynamic stress drops of these earthquakes generally increased with the size (moment) of the events. The fault radii for these shocks increased with seismic moment, but only by a factor of 2 for a 100-fold increase in seismic moment. The velocity waveforms of the larger events were systematically more impulsive than those of the smaller earthquakes. These observations imply that, for this set of earthquakes, the final fault radius is a function of the stress drop that occurs during the rupture process.


2019 ◽  
Author(s):  
Tuna Eken

Abstract. Proper estimate of moment magnitude that is a physical measure of the energy released at earthquake source is essential for better seismic hazard assessments in tectonically active regions. Here a coda wave modeling approach that enables the source displacement spectrum modeling of examined event was used to estimate moment magnitude of central Anatolia earthquakes. To achieve this aim, three component waveforms of local earthquakes with magnitudes 2.0 ≤ ML ≤ 5.2 recorded at 72 seismic stations which have been operated between 2013 and 2015 within the framework of the CD-CAT passive seismic experiment. An inversion on the coda wave traces of each selected single event in our database was performed in five different frequency bands between 0.75 and 12 Hz. Our resultant moment magnitudes (MW-coda) exhibit a good agreement with routinely reported local magnitude (ML) estimates for study area. Finally, we present an empirical relation between MW-coda and ML for central Anatolian earthquakes.


2020 ◽  
Vol 185 ◽  
pp. 103083 ◽  
Author(s):  
S.A. Binnie ◽  
K.R. Reicherter ◽  
P. Victor ◽  
G. González ◽  
A. Binnie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document