scholarly journals On the Source Parameters and Genesis of the 2017, Mw 4 Montesano Earthquake in the Outer Border of the Val d’Agri Oilfield (Italy)

2021 ◽  
Vol 8 ◽  
Author(s):  
José Ángel López-Comino ◽  
Thomas Braun ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Stefania Danesi

On October 27, 2017, an Mw 4 earthquake occurred close to the municipality of Montesano sulla Marcellana, less than 10 km external to the concession of the largest European onshore hydrocarbon reservoir—the Val d’Agri oilfield (Southern Italy). Being a weak event located outside the extended monitoring domain of the industrial concession, the relevance of this earthquake and the possible links with the hydrocarbon exploitation were not extensively discussed. Actually, the analysis of shallow seismic events close to subsurface exploitation domains plays a significant role in the definition of key parameters in order to discriminate between natural, triggered, and induced seismicity, especially in tectonically active regions. The study of weak-to-moderate earthquakes can improve the characterization of the potentially destructive seismic hazard of this particular area, already struck by M > 6.5 episodes in the past. In this work, we analyze the source parameters of this Mw 4 earthquake by applying advanced seismological techniques to estimate the uncertainties derived from the moment tensor inversion and identify plausible directivity effects. The moment tensor is dominated by a NW–SE oriented normal faulting with a centroid depth of 14 km. A single ML 2.1 aftershock was recorded and used as the empirical Green’s function to calculate the apparent source time function for the mainshock. Apparent durations (in the range 0.11–0.21 s, obtained from S-waves) define an azimuthal pattern, which reveals an asymmetric bilateral rupture with 70% of the rupture propagation in the N310°W direction, suggesting a rupture plane dipping to the SW. Our results tally with the activation of a deeper fault segment associated with the Eastern Agri Fault System close to the basement as the origin of the Montesano earthquake. Finally, the Coulomb stress rate induced by depletion of the oilfield is calculated to quantify the trigger potential estimated for the Montesano earthquake yielding relatively low probabilities below 10%. Our analyses point toward the conclusion that the Mw 4 event was more likely due to the local natural tectonic stress, rather than induced or triggered by the long-term hydrocarbon extraction in the Val d’Agri oilfield.

2021 ◽  
Author(s):  
José Ángel López-Comino ◽  
Thomas Braun ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Stefania Danesi

<p>On October 27<sup>th</sup>, 2017, a M<sub>w</sub> 4 earthquake occurred close to the municipality of Montesano sulla Marcellana, less than 10 km external to the concession of the largest European on-shore hydrocarbon reservoir - the Val d’Agri oilfield (Southern Italy). Being a weak event located outside the extended monitoring domain of the industrial concession, the relevance of this earthquake and possible links with the hydrocarbon exploitation were not deepened. The study of weak to moderate earthquakes can improve the characterization of the potentially destructive seismic hazard of this particular area, already struck by M>6.5 episodes in the past. Taking advantage of a wide coverage of seismic stations deployed in the VA region, we analyze the source parameters of this M<sub>w</sub> 4 earthquake applying advanced seismological techniques to estimate the uncertainties derived from the moment tensor inversion and identify plausible directivity effects. The moment tensor is dominated by a NW-SE oriented normal faulting with a centroid depth of 14 km. A single M<sub>L</sub> 2.1 aftershock was recorded and used as empirical Green function to calculate the apparent source time function for the mainshock. Apparent durations (in the range 0.11 - 0.21 s, obtained from S-waves) define an azimuthal pattern which reveals an asymmetric bilateral rupture with the 70% of the rupture propagation in the N310°W direction, suggesting a rupture plane dipping to the SW. Our results conclude that the Montesano earthquake activated a deeper fault segment associated to the Eastern Agri Fault System close to the basement. The relative low trigger potential below 10% based on depletion-induced stress changes discards an induced or triggered event due to the long-term hydrocarbon extraction in the Val d’Agri oilfield, and it rather suggests a natural cause due to the local tectonic stress.</p>


1987 ◽  
Vol 77 (5) ◽  
pp. 1558-1578
Author(s):  
Kristín S. Vogfjörd ◽  
Charles A. Langston

Abstract Average source parameters of the 1968 Meckering, Australia earthquake are obtained by the inversion of body waves. The objectives of the inversion are the elements of the moment tensor and the source-time history. An optimum source depth of 3 km is determined, but because of source complexity the point source assumption fails and the moment tensor obtained at that depth has a large nondouble-couple term, compensated linear vector dipole = 34 per cent. The source parameters of the major double-couple are: strike = 341°; dip = 37°; rake = 61°; and seismic moment = 8.2 ×1025 dyne-cm. The source-time function is of approximately 4 sec duration, with a long rise time and a sharp fall-off. The fault length is constrained on the surface by the observed surface break, and results from vertical displacement modeling suggest a width of approximately 10 km in the middle, assuming a dip of 37°. That restricts the entire faulted area to lie above 6 km depth. Two finite fault models for the earthquake are presented, with rupture initiating at a point (1) near the top of the fault and (2) at the bottom of the fault. Both models produce similar long-period synthetics, but based on the short-period waveforms, model 1 is favored. It is argued that such a rupture process is the most reasonable in this cold shield region.


Author(s):  
Lindsay M. Linzer ◽  
Mark W. Hildyard ◽  
Johan Wesseloo

This paper presents a numerical investigation on the influence of the mining environment on seismic sources, with a focus on pillar failure mechanisms in tabular mining. We investigate the influence of the mining stope (underground excavation or void) on seismic inversions for the scalar moment, corner frequency, source radius, stress drop and moment tensor using synthetic events created within elastodynamic numerical modelling software, WAVE3D. The main objective is to determine whether the source parameters calculated from the recorded waveforms are due to a combination of the stope source and the pillar sources, rather than being related only to crushing of the pillar or shearing in the pillar footwall. The main finding is that the presence of stopes, and types of pillars, have a significant impact on the seismic moment and other source parameters. This is important since the moment is viewed as a robust parameter on which seismic magnitude is often based; however, this study indicates that moments calculated for pillar failure in a tabular stoping environments are less representative of the shearing or crushing source than originally thought. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.


1981 ◽  
Vol 71 (5) ◽  
pp. 1423-1444
Author(s):  
Jeffrey S. Barker ◽  
Charles A. Langston

abstract Seismograms from WWSSN and Canadian network stations were modeled to determine the source parameters of the 20 June 1978 Thessaloniki, Greece, earthquake (Ms = 6.4). The depth of the initial rupture was constrained to 11 ± 1 km by comparison of the arrival times of surface reflections with synthetic short-period seismograms. A focal sphere plot of first motion polarities provided little constraint on other focal parameters, except to indicate that predominantly normal faulting was involved. A generalized inverse technique utilizing the moment tensor formalism was applied to teleseismic P and SH waves for six increments of depth. The moment tensor obtained indicated a nearly horizontal, N-trending tension axis and a nearly vertical compression axis, and yielded the following double-couple source parameters: strike 280° ± 7°; dip 55° ± 3°; rake −65° ± 5°; seismic moment 5.7 × 1025 dyne-cm; and a skewed triangular source time function with a rise time of about 1 sec and duration of 6 to 8 sec. Due to indications of multiple or finite source effects for this event, and the assumption in the moment tensor formalism of a point source, a low-pass filter was applied to the data and the inversions were repeated. The results were nearly identical with those of the original inversion, suggesting that any individual sources had similar mechanisms, or that the point source model is sufficient for this earthquake.


2019 ◽  
Vol 177 (5) ◽  
pp. 1917-1929 ◽  
Author(s):  
Ken Miyakoshi ◽  
Kazuhiro Somei ◽  
Kunikazu Yoshida ◽  
Susumu Kurahashi ◽  
Kojiro Irikura ◽  
...  

By recording several components of tilt, strain and acceleration at one location, one can determine the focal mechanism, or moment tensor, of an earthquake. Alternatively, recordings made at several locations can be used. The moment tensor can be decomposed into its isotropic part and its deviatoric part. When the eigerrvalues of the deviator are in the sequence (— 1, 0, 1) the equivalent double couple can be found.


2018 ◽  
Vol 40 (3) ◽  
pp. 1032
Author(s):  
A. Agalos ◽  
P. Papadimitriou ◽  
N. Voulgaris ◽  
K. Makropoulos

Seismic moment tensors are estimated for earthquakes offshore Northern California and Greece using inversion of regionally recorded broadband seismograms. This study includes inversion results for the strongest events that occurred inside the Gorda plate and near the Mendocino triple junction from 1991 to 2005. The regional results are in good agreement with obtained teleseismic results. We finally applied the moment tensor inversion methodology and validation mainly to moderate sized earthquakes, with magnitude greater than M~4.0, in the Aegean area. The focal mechanisms of HI earthquakes that occurred during the time period between June 2003 and March 2007 were estimated using this procedure.


Author(s):  
Alexandra Moshou ◽  
George Drakatos ◽  
Vassilios Moussas ◽  
Panagiotis Argyrakis ◽  
Antonios Konstantaras ◽  
...  

During the period January 2014 – October 2018, four strong earthquakes occurred in the Ionian Sea, Greece. A rich aftershock sequence followed each event of them. More analytically, according to the manual solutions of National Observatory of Athens, the first event (K1), occurred on 26 January 2014 in Kefallinia Island with magnitude ML = 5.8, which was followed by another in the same region (K2) on 3 February 2014 with magnitude ML = 5.7. The third event occurred on 17 November 2015, ML = 6.0 in Lefkas Island (L1) and the last on 25 October 2018, ML = 6.6 in Zande Island (Z1). The first three of these earthquakes caused moderate structural damages mainly in houses and produced particular unrest to the local population. This work presents first the calculation of the source parameters of the strong events as well as for all earthquakes with magnitude ML > 4.0, using the methodology of the Moment tensor inversion and secondary data from permanent GPS stations were analyzed to confirm the findings from seismological data and to investigate the displacement due to the earthquakes.


Author(s):  
Johannes Albert ◽  
Maximilian Schärf ◽  
Frieder Enzmann ◽  
Martin Waltl ◽  
Frank Sirocko

AbstractThis paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.


Sign in / Sign up

Export Citation Format

Share Document