Scaling relationships between lake surface area and catchment area

2020 ◽  
Vol 82 (3) ◽  
Author(s):  
Jonathan A. Walter ◽  
Rachel Fleck ◽  
Michael L. Pace ◽  
Grace M. Wilkinson
Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1056 ◽  
Author(s):  
Songpu Shang ◽  
Songhao Shang

The determination of the rational minimum ecological water level is the base for the protection of ecosystems in shrinking lakes and wetlands. Based on the lake surface area method, a simplified lake surface area method was proposed to define the minimum ecological lake level from the lake level-logarithm of the surface area curve. The curve slope at the minimum ecological lake level is the ratio of the maximum lake storage to the maximum surface area. For most practical cases when the curve cannot be expressed as a simple analytical function, the minimum ecological lake level can be determined numerically using the weighted sum method for an equivalent multi-objective optimization model that balances ecosystem protection and water use. This method requires fewer data of lake morphology and is simple to compute. Therefore, it is more convenient to use this method in the assessment of the ecological lake level. The proposed method was used to determine the minimum ecological water level for one freshwater lake, one saltwater lake, and one wetland in China. The results can be used in the lake ecosystem protection planning and the rational use of water resources in the lake or wetland basins.


2018 ◽  
Vol 11 (5) ◽  
Author(s):  
Hickmat Hossen ◽  
Mona G. Ibrahim ◽  
Wael Elham Mahmod ◽  
Abdelazim Negm ◽  
Kazuo Nadaoka ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael F. Meyer ◽  
Stephanie G. Labou ◽  
Alli N. Cramer ◽  
Matthew R. Brousil ◽  
Bradley T. Luff

Abstract An increasing population in conjunction with a changing climate necessitates a detailed understanding of water abundance at multiple spatial and temporal scales. Remote sensing has provided massive data volumes to track fluctuations in water quantity, yet contextualizing water abundance with other local, regional, and global trends remains challenging by often requiring large computational resources to combine multiple data sources into analytically-friendly formats. To bridge this gap and facilitate future freshwater research opportunities, we harmonized existing global datasets to create the Global Lake area, Climate, and Population (GLCP) dataset. The GLCP is a compilation of lake surface area for 1.42 + million lakes and reservoirs of at least 10 ha in size from 1995 to 2015 with co-located basin-level temperature, precipitation, and population data. The GLCP was created with FAIR (findable, accessible, interoperable, reusable) data principles in mind and retains unique identifiers from parent datasets to expedite interoperability. The GLCP offers critical data for basic and applied investigations of lake surface area and water quantity at local, regional, and global scales.


2002 ◽  
Vol 28 (3) ◽  
pp. 1512-1515
Author(s):  
Richard Douglas ◽  
Brian Rippey ◽  
Chris Gibson

Acidification of freshwaters have inflicted a m ajor perturbation on Scandinavian aquatic ecosystems as indicated by severe regional loss of fish populations. This decline was first noted in the early 1920s but became particularly severe after W orld W ar II in the 1950s and 1960s. In southern Norway regional dam age is now docum ented in an area of 33000 km 2 , 13000 km 2 of which are devoid offish. Several m ajor southern salmon rivers are now barren. In Sweden more than 2500 lakes are docum ented to be affected. This corresponds to 3 -4 % of the total lake surface area. An additional 6000 lakes are assumed to be affected by acidification. Population losses are also found in thousands of kilometres of running w ater as well as in salmon and seatrout rivers on the southwest coast. This paper describes the early observations, chronology of this decline and reviews possible causes and mechanisms. The acidification and the associated loss of fishstocks over vast areas is apparently the most devastating change recorded for the fish fauna of Scandinavia


2015 ◽  
Vol 14 (3) ◽  
pp. 121-129
Author(s):  
Kubiak-Wójcicka Katarzyna ◽  
Izabela Lewandowska

Abstract This paper presents lake surface area changes that have taken place in the Gwda River basin. The studies were conducted on the basis of the cartographic materials released since the beginning of the twentieth century until the present times. The starting point was the area of all lakes greater than 1 ha which are present on the MPHP map from 2010. The assessment of the changes in the surface area of lakes in the Gwda River basin during approximately the last 100 years was possible thanks to the use of German topographic maps, so called Messtischblatt, at a scale of 1: 25 000 released between 1919 and 1944. The area of all the studied lakes has decreased by 465.09 ha (from 12783.62 ha at the beginning of the twentieth century to 12318.53 ha at the present time). Despite the general trend of lake atrophy, in particular cases one may observe an increase in the water surface area. This is the result of hydrotechnical works leading to river and lake damming, which in turn hampers the pace of atrophy.


2007 ◽  
Vol 141 (1-3) ◽  
pp. 131-147 ◽  
Author(s):  
Tyler Wagner ◽  
Patricia A. Soranno ◽  
Kendra Spence Cheruvelil ◽  
William H. Renwick ◽  
Katherine E. Webster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document