scholarly journals Nitrogen removal processes in lakes of different trophic states from on-site measurements and historic data

2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Beat Müller ◽  
Raoul Thoma ◽  
Kathrin B. L. Baumann ◽  
Cameron M. Callbeck ◽  
Carsten J. Schubert

AbstractFreshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m−2 year−1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m−2 year−1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water–sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity.

1984 ◽  
Vol 16 (03) ◽  
pp. 603-617 ◽  
Author(s):  
Michael Stein

The asymptotic moments of the concentration of a pollutant subject to rainout and dry removal are given. Both the lengths of the wet and dry periods and the wet and dry removal rates are allowed to be random, although the removal rate is assumed to be fixed within any one wet or dry period. The results hold in a more general setting than removal processes, so its is hoped that they will be applicable to other problems.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 419-428 ◽  
Author(s):  
L. Larrea ◽  
A. Abad ◽  
J. Gayarre

The effect on NH4-N removal rates in nitrification biofilters of filtered biodegradable COD and particulate COD leaving predenitrification biofilters was studied in a lab scale plant configured with the separated system of biofilters for secondary nitrogen removal from urban wastewaters. Applying a typical COD load of 11 kg/m3.day to the predenitrification biofilter and maximizing its COD removal by adding nitrates or by operating an improved control of the internal recycle, only 60% removal of filtered biodegradable COD was found. This value corresponds to the complete removal of the readily biodegradable substrate (30% of influent filtered COD) and 36% of filtered slowly biodegradable substrate (50% of influent COD). The remaining 64% of the latter entered the nitrification biofilter, causing competition between heterotrophs and nitrifiers for dissolved oxygen in the inner layers of the biofilm. Consequently the nitrification rate had relatively low values (0.5 kgN/m3.d) at 14°C despite using dissolved oxygen levels of 6 mg/l. This behaviour may explain the lower nitrification rates obtained in some cases of nitrification biofilters compared to those in tertiary nitrification after activated sludge processes. The particulate COD entering the nitrification biofilter is associated with the suspended solids leaving the denitrification biofilter which are adsorbed by the external layers of the biofilm, increasing its thickness. The activity of the nitrifiers was affected because of a lack of oxygen when the thickness was left to grow considerably. Therefore no significant particulate COD effect is expected to occur as long as backwashing is carried out with the appropriate frequency.


2012 ◽  
Vol 610-613 ◽  
pp. 2006-2011
Author(s):  
Chun Yan Xu ◽  
Hong Jun Han

Full scale two-stage activated sludge process (ASP) with fixed biological media was used to treat coal gasification wastewater. The ASP has operated for more than one year and COD, total phenol and NH4-N removal effects were illuminated. COD and total phenol removal rates were around 85% and 90% during long term operation. Effluent COD and total phenol of the first stage of the ASP had an abnormal increase and turned to normal after several weeks. Nitrification of the ASP increased slowly and NH4-N removal rates achieved 80% after 15 weeks. Stenotrophomonas maltophilia K279a is isolated from coal chemical industry wastewater. The optimum conditions for PO production are phenol 1000mg/L, temperature 30-34 and pH 7-7.5. The strain resists 980mg/L COD and 805mg/L phenols. The degradation rate of phenols reaches 97% in 48h. The results show that Stenotrophomonas maltophilia K279a can be applied to the aerobic process with high proportion of phenols


2015 ◽  
Vol 73 (5) ◽  
pp. 1018-1024 ◽  
Author(s):  
J. Harada ◽  
T. Inoue ◽  
K. Kato ◽  
H. Izumoto ◽  
X. Zhang ◽  
...  

This study evaluated the nitrogen compound removal efficiency of a hybrid subsurface constructed wetland, which began treating milking parlor wastewater in Hokkaido, northern Japan, in 2006. The wetland's overall removal rates of total nitrogen (TN) and ammonium (NH4+-N) improved after the second year of operation, and its rate of organic nitrogen (Org-N) removal was stable at 90% efficiency. Only nitrate (NO3−-N) levels were increased following the treatment. Despite increased NO3−-N (maximum of 3 mg-N/L) levels, TN removal rates were only slightly affected. Removal rates of TN and Org-N were highest in the first vertical bed. NH4+-N removal rates were highest in the second vertical bed, presumably due to water recirculation and pH adjustment. Concentrations of NO3−-N appeared when total carbon (TC) levels were low, which suggests that low TC prevented complete denitrification in the second vertical bed and the final horizontal bed. In practice, the beds removed more nitrogen than the amount theoretically removed by denitrification, as calculated by the amount of carbon removed from the system. This carbon-nitrogen imbalance may be due to other nitrogen transformation mechanisms, which require less carbon.


GCB Bioenergy ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 246-261 ◽  
Author(s):  
Andrea Ferrarini ◽  
Flavio Fornasier ◽  
Paolo Serra ◽  
Federico Ferrari ◽  
Marco Trevisan ◽  
...  
Keyword(s):  

1995 ◽  
Vol 32 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Zhu Tong ◽  
F. J. Sikora

A greenhouse experiment was conducted at Tennessee Valley Authority, Alabama, USA, in the summer of 1993 to investigate ammonium and nitrate removal processes in constructed wetlands. Microcosm wetlands cells were used in the study and consisted of plastic containers with 0.4 × 0.35 m2 surface area and 0.5 m depth. Two separate experiments were conducted. One experiment analyzed NH4-N removal and the other analyzed NO3-N removal. Nutrient solutions containing approximately 48 mg/l NH4-N or NO3-N were added in a batch mode to the wetland microcosms and the solution chemistry was analyzed with time. Treatments consisted of unplanted cells or cells planted with canarygrass (Phalaris arundinacea), reed (Phragmites communis), bulrush (Scirpus atrovirens georgianus) or typha (Typha latifolia). Another treatment consisted of added nutrient solutions containing or not containing C at 112 mg/l. In the NH4-N removal experiment, the rate of NH4-N removal occurred in the order: reed > canarygrass = bulrush > typha ≫ unplanted in wetland cells with and without C. The order of NH4-N removal was believed to be associated with the density of root biomass in the gravel. The greater the root biomass, the greater the chance for plant N uptake or nitrification mediated by O2 transport to the rhizosphere. In the NO3-N experiment, the rate of NO3-N removal occurred in the order: reed = canarygrass > typha = bulrush > unplanted cells. Labelled K15NO3 was used to trace the NO3-N removal process. By measuring the 15N in the plant biomass, the quantity of NO3-N removed via plant uptake was delineated from combined removal processes of denitrification and immobilization. In the treatments with C, 55 to 70% of the NO3-N was removed via denitrification and immobilzation. For bulrush, reed and typha, the quantity of NO3-N removed via denitrification and immobilization without added C was reduced to 14 to 30%. However, NO3-N removal via denitrification and immobilization remained high at 72% of added NO3-N in canarygrass cells due to high concentrations of organic C released from the canarygrass roots (15-20 mg/l C) that apparently did not limit denitrification or immobilization.


2018 ◽  
Vol 78 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Fanping Zheng ◽  
Chaoquan Tan ◽  
Wanyuan Hou ◽  
Linli Huang ◽  
Jing Pan ◽  
...  

Abstract Nitrogen removal and N2O emission of a biochar-sludge amended soil wastewater infiltration system (SWIS) with/without intermittent aeration under different influent COD/N ratios was investigated. Nitrogen removal and N2O emission were affected by influent COD/N ratio. Under a COD/N ratio between 1:1 and 15:1, average chemical oxygen demand (COD), NH4+-N and total nitrogen (TN) removal rates decreased with COD/N ratio increase in non-aerated SWISs amended with/without biochar-sludge; an increasing COD/N ratio hardly affected COD and NH4+-N removal in a biochar-sludge amended SWIS with intermittent aeration; the N2O emission rate decreased with COD/N ratio increase in the studied SWISs. The biochar-sludge amended SWIS with intermittent aeration achieved high COD (92.2%), NH4+-N (96.8%), and TN (92.7%) removal rates and a low N2O emission rate (10.6 mg/(m2 d)) under a COD/N ratio of 15:1, which was higher than those in non-aerated SWISs amended with/without biochar-sludge. Combining the biochar-sludge amended SWIS with intermittent aeration enhanced the number of nitrifying bacteria, denitrifying bacteria, nitrate reductase activities, nitrite reductase activities, and improved the abundance of nitrogen removal functional genes under a high influent COD/N ratio. The results suggested that the joint use of intermittent aeration and biochar-sludge in a SWIS could be an effective and appropriate strategy for improving nitrogen removal and reducing N2O emissions in treating high COD/N ratio wastewater.


2014 ◽  
Vol 919-921 ◽  
pp. 2178-2181 ◽  
Author(s):  
Shui Ying Xiong ◽  
Jiang Nan Ge ◽  
Shen Wei Wang ◽  
Mu Qing Qiu

Seasonal performances of three vertical2flowconstructedwetlands (VFCWs) filled with different packing materials for piggery wastewater treatment was investigated. Results showed that there were no some significant seasonal differences in the COD removal efficiency among three types of VFCWs. Biodegradation of organic matter in all three VFCWs were found following the first order rate model. The N removal efficiencies in conventional VFCWs indifferent seasons constantly maintained at 52%. However, N removal efficiencies were found fluctuating over seasons in VFCWs filled with zeolite or zeolite cinder, 89.8% and 93.4% in autumn, 64.2% and 73.5% in winter, and around 80% in spring and summer, respectively. Total nitrogen (TN) removal efficiencies of all VFCWs in winter were considerably lower than those in the other seasons due to relatively weaker processes of nitrification-denitrification. The nitrification activity in VFCWs filled with zeolite2cinder was the highest among all of VFCWs, while the denitrification activity in VFCWs filled with zeolite or zeolite-cinder was more in tensive than that in the conventional VFCWs, agreeing with the TN removal efficiencies in three VFCWs. As packing material, zeolite is able to accelerate the process of denitrification as well as TN removal efficiencies of VFCWs.


Sign in / Sign up

Export Citation Format

Share Document