scholarly journals Prediction of dissolved inorganic nitrogen (DIN) concentrations in deep, seasonally stratified lakes based on rates of DIN input and N removal processes

1993 ◽  
Vol 55 (2) ◽  
pp. 112-131 ◽  
Author(s):  
P. H�hener ◽  
R. G�chter
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Harish Gupta ◽  
S. Kiran Kumar Reddy ◽  
Mounika Chiluka ◽  
Vamshikrishna Gandla

AbstractIn this study, we demonstrate the impact of the construction of a mega-dam on the nutrient export regime of a large tropical river into the Arabian Sea. Long-term (11 years) fortnight nutrient parameters, upstream and downstream to Sardar Sarovar (SS) Dam, were examined to determine the periodical change in nutrient fluxes from the Narmada River, India. During this 11-year period, the average discharge of the Narmada River upstream to Rajghat (35.3 km3 year−1) was higher than that of downstream at Garudeshwar (33.9 km3 year−1). However, during the same period, the suspended sediment load was reduced by 21 million tons (MT) from 37.9 MT at Rajghat to 16.7 MT at Garudeshwar. Similarly, mean concentrations of dissolved silica (DSi) reduced from 470 (upstream) to 214 µM (downstream), dissolved inorganic phosphate (DIP) from 0.84 to 0.38 µM, and dissolved inorganic nitrogen (DIN) from 43 to 1.5 µM. It means that about 54%, 55%, and 96% flux of DSi, DIP, and DIN retained behind the dam, respectively. The estimated denitrification rate (80,000 kg N km−2 year−1) for the reservoir is significantly higher than N removal by lentic systems, globally. We hypothesize that processes such as biological uptake and denitrification under anoxic conditions could be a key reason for the significant loss of nutrients, particularly of DIN. Finally, we anticipated that a decline in DIN fluxes (by 1.13 × 109 mol year−1) from the Narmada River to the Arabian Sea might reduce the atmospheric CO2 fixation by 7.46 × 109 mol year−1.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Beat Müller ◽  
Raoul Thoma ◽  
Kathrin B. L. Baumann ◽  
Cameron M. Callbeck ◽  
Carsten J. Schubert

AbstractFreshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m−2 year−1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m−2 year−1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water–sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity.


2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


2008 ◽  
Vol 43 (11) ◽  
pp. 1223-1233 ◽  
Author(s):  
Bernice R. Rosenzweig ◽  
Hee Sun Moon ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Peter R. Jaffe

2021 ◽  
Vol 171 ◽  
pp. 112655
Author(s):  
G.L. McCloskey ◽  
R. Baheerathan ◽  
C. Dougall ◽  
R. Ellis ◽  
F.R. Bennett ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 527-533 ◽  
Author(s):  
M. Ozawa ◽  
H. Shibata ◽  
F. Satoh ◽  
K. Sasa

To clarify the effect of vegetation and surface soil removal on dissolved inorganic nitrogen (N) dynamics in a snow-dominated forest soil in northern Japan, the seasonal fluctuation of N concentrations in soil solution and the annual flux of N in soil were investigated at a treated site (in which surface soil, including understory vegetation and organic and A horizons, was removed) and control sites from July 1998 to June 2000. Nitrate (NO3–) concentration in soil solution at the treated site was significantly higher than that of the control in the no-snow period, and it was decreased by dilution from melting snow. The annual net outputs of NO3–from soil at the treated site and control sites were 257 and –12 mmol m–2year–1, and about 57% of the net output at the treated site occurred during the snowmelt period. NO3–was transported from the upper level to the lower level of soil via water movement during late autumn and winter, and it was retained in soil and leached by melt water in early spring. Removing vegetation and surface soil resulted in an increase in NO3–concentration of soil solution, and snowmelt strongly affected the NO3–leaching from treated soil and the NO3–restoration process in a snow-dominated region.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel G. Woodman ◽  
Sacha Khoury ◽  
Ronald E. Fournier ◽  
Erik J. S. Emilson ◽  
John M. Gunn ◽  
...  

AbstractInsect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.


Sign in / Sign up

Export Citation Format

Share Document