Wave trapping by a submerged permeable flexible membrane near an impermeable sea wall

Author(s):  
R. Gayathri ◽  
Jeevanjyoti Behera ◽  
Harekrushna Behera
2021 ◽  
Vol 143 (5) ◽  
Author(s):  
V. Venkateswarlu ◽  
K. G. Vijay ◽  
R. Raja Pandi ◽  
Chandra Shekhar Nishad

Abstract The gravity wave interaction with a flexible membrane placed at a finite distance from the partially reflecting seawall is analyzed under the framework of linear water wave theory using the multi-domain boundary element method (BEM). The flow through a flexible membrane is assumed to follow Darcy’s law in addition to membrane displacements. As a viable alternative to the existing wave dampers, the flexible membrane is examined for the effective dampening of incident waves. The correctness of the numerical results is affirmed with the known results available in the literature. The effect of membrane tension, submergence depth, membrane width, porosity, angle of inclination, and confined chamber spacing on hydrodynamic coefficients is discussed as a function of dimensionless wavenumber. The partially reflecting harbor wall diminishes the wave reflection coefficient in the long-wave regime. The increase in the flexible membrane width does not necessarily ensure the ideal wave capturing performance. A shift in the peak of the maximum deflection is observed with the increase of membrane width while there is a shift in peak outward for the increase in the submergence depth. Moreover, the maximum deflection is found to decrease with the increase in porosity, and it is 62% reduction for membrane porosity b = 1 due to the significant wave damping. The wave run-up and the wall force coefficients are found to be minimum when the relative plate width is B/h = 1. The present study is expected to be useful for the design of cost-effective wave attenuating systems.


2020 ◽  
Vol 24 (1) ◽  
pp. 100-105
Author(s):  
Herawati Herawati ◽  
Muhammad Arsyad Thaha ◽  
Chairul Paotonan

Abstrak Wilayah pesisir merupakan pertemuan antara wilayah laut dan wilayah darat, dimana daerah ini merupakan daerah interaksi antara ekosistem darat dan ekosistem laut yang sangat dinamis dan saling mempengaruhi. Tujuan penelitian ini adalah untuk menentukan material lokal yang potensial dapat digunakan sebagai bahan bangunan pelindung pantai dan memilih tipe bangunan pelindung pantai yang sesuai kondisi hidro-oseanografi di lokasi studi dengan metode Analythic Hierarchy Process. Lokasi penelitian berada di Provinsi Sulawesi Tenggara, tepatnya di Pulau Kabaena, Kecamatan Kabaena Barat Desa Sikeli kabupaten Bombana. Pulau Kabaena memiliki luas 873 km2. Secara geografis terletak antara 4°22’ 59,4” - 5°28’ 26,7” Lintang Selatan serta antara 121°27’46,7”-122°09’,4” Bujur Timur. Hasil penelitian menunjukkan perairan disepanjang tanjung perak sangat mempengaruhi hidro-oseonografi disekitar pantai desa Sikeli. Kondisi ini berpengaruh terhadap pola pergerakan arus dan tinggi gelombang datang disekitar pantai desa Sikeli. Tinggi gelombang rata-rata yang paling besar merambat dari arah barat sebesar 0.49 m dengan presentase kajadian sebesar 32.42 %, disusul arah barat laut sebesar 0.39 m (20.56 %), arah tenggara sebesar 0.31 m (8.72 %) arah barat daya sebesar 0.31 m (7.99 %), arah utara sebesar 0.20 m (6.94 %), arah timur sebesar 0.15 m (11.81 %), arah selatan sebesar 0.12 m (3.42 %), dan arah timur laut sebesar 0.11 m (8.15 %). Pengambilan keputusan untuk memilih tipe bangunan pelindung pantai dengan metode AHP (Analytical Hierarchy Process) untuk penanganan abrasi pesisir pantai desa Sikeli berbasis bahan lokal diperoleh bahwa alternatif bangunan dengan nilai keterpilihan yang tertinggi adalah detached breakwater (0,4432) disusul groin (0,2479), sea-wall (0,1700) dan revetment (0.1389). Detached breakwater berfungsi untuk menahan laju sedimen kearah laut, mengurangi ketinggian dan meredam energi gelombang dan tidak dibangun sepanjang garis pantai yang akan dilindungi sehingga kapal nelayan dapat ditambat dipesisir pantai dengan aman. Abstract The Selection Type of Coastal Protection Structures in Sikeli Village Based on Local Materials. The coastal area is a meeting point between the sea and land areas, where this area is an area of interaction between terrestrial ecosystems and marine ecosystems which are very dynamic and influence each other. The purpose of this research is to determine local materials that can be used as coastal protection materials and to select the type of coastal protection that is suitable for the hydro-oceanographic conditions in the study location using the Analythic Hierarchy Process method. The research location is in Southeast Sulawesi Province, precisely on Kabaena Island, Kabaena Barat District, Sikeli Village, Bombana Regency. Kabaena Island has an area of 873 km2. Geographically it is located between 4° 22' 59.4"- 5° 28' 26.7" South Latitude and between 121° 27' 46.7 "-122° 09' 4" Longitude East. The results showed that the waters along Tanjung Perak greatly affect the hydro-oseonography around the coast of Sikeli village. This condition affects the current movement pattern and the height of the incoming waves around the coast of Sikeli village. The largest average wave height propagating from the west is 0.49 m with a kajadian percentage of 32.42%, followed by the northwest direction of 0.39 m (20.56%), southeast direction of 0.31 m (8.72%) to the southwest of 0.31 m (7.99%), to the north of 0.20 m (6.94%), to the east of 0.15 m (11.81%), to the south of 0.12 m (3.42%), and to the northeast of 0.11 m (8.15%). The decision to choose the type of coastal protection using the AHP (Analytical Hierarchy Process) method for the coastal abrasion management model in Sikeli village based on local materials was obtained that the alternative building with the highest electability value was the detached breakwater (0.4432) followed by groins (0.2479), sea-wall (0.1700) and revetment (0.1389). The detached breakwater model which functions to restrain the sediment rate towards the sea, reduce the height and reduce wave energy and is not built along the coastline which will be protected so that fishing boats can be moored to the coast safely.


2021 ◽  
Vol 28 (4) ◽  
pp. 042302
Author(s):  
X. Garbet ◽  
O. Panico ◽  
R. Varennes ◽  
C. Gillot ◽  
G. Dif-Pradalier ◽  
...  
Keyword(s):  

2021 ◽  
Vol 266 ◽  
pp. 118569
Author(s):  
Pratik S. Dhumal ◽  
Rahul V. Khose ◽  
Pravin H. Wadekar ◽  
Kshama D. Lokhande ◽  
Surajit Some

2017 ◽  
Vol 145 (9) ◽  
pp. 3775-3794 ◽  
Author(s):  
Dana Mueller ◽  
Bart Geerts ◽  
Zhien Wang ◽  
Min Deng ◽  
Coltin Grasmick

This study documents the evolution of an impressive, largely undular bore triggered by an MCS-generated density current on 20 June 2015, observed as part of the Plains Elevated Convection at Night (PECAN) experiment. The University of Wyoming King Air with profiling nadir- and zenith-viewing lidars sampled the south-bound bore from the time the first bore wave emerged from the nocturnal convective cold pool and where updrafts over 10 m s−1 and turbulence in the wave’s wake were encountered, through the early dissipative stage in which the leading wave began to lose amplitude and speed. Through most of the bore’s life cycle, its second wave had a higher or equal amplitude relative to the leading wave. Striking roll clouds formed in wave crests and wave energy was detected to about 5 km AGL. The upstream environment indicates a negative Scorer parameter region due to flow reversal at midlevels, providing a wave trapping mechanism. The observed bore strength of 2.4–2.9 and speed of 15–16 m s−1 agree well with values predicted from hydraulic theory. Surface and profiling measurements collected later in the bore’s life cycle, just after sunrise, indicate a transition to a soliton.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (16) ◽  
pp. 3341-3349 ◽  
Author(s):  
Mathias Ohlin ◽  
Ida Iranmanesh ◽  
Athanasia E. Christakou ◽  
Martin Wiklund

We study the effect of 1 MPa-pressure ultrasonic-standing-wave trapping of cells during one hour in a fully temperature- and acoustic streaming-controlled microfluidic chip, and conclude that the viability of lung cancer cells are not affected by this high-pressure, long-term acoustophoresis treatment.


1974 ◽  
Vol 1 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Jedfrey M. Carlton

Covering broad areas of tropical shorelines are unique plants known as mangroves, which exhibit several structural and physiological modifications to the saline environment—especially in their root systems. Prop-roots and pneumatophores, two obvious modifications, allow mangroves to play a role in coastal geomorphology, either as land-builders or as stabilizers of substrates derived from classical sedimentation processes.Current data show that: (1) Provided with proper substrates, mangrove seedlings can be raised in the laboratory for later planting in the field, although on exposed beaches success ratios may be low. (2) Larger mangrove plants (1.0–5.0 m in height) may be transplanted with relative ease and appear to succeed with few or no mortalities resulting from the techniques used. (3) Pruning of mangroves appears to be a successful method of mangrove control, allowing their utilization for stabilization around housing developments. (4) Fossil evidence for mangroves as shoreline developers is suggested by the discovery of a fossil mangrove reef off the Miami, Florida, coast. However, submergence of near-by mangrove areas has occurred, as evidenced by sea-grass beds growing above buried peat in the bay bottom. (5) Black Mangroves may be more useful than Red Mangroves as shoreline stabilizers due to their cold-hardiness, ability to tolerate disturbed substrates, and rapid production of pneumatophores. (6) Insect and isopod damage to mangroves has been documented, and it has been suggested by several research workers that such damage may lead to increased erosion of coastlines in many areas of southern and central Florida. In addition, boring activities in Red Mangrove seedlings may result in decreased numbers of seedlings being available for new mangrove growth and colonization. (7) Mangroves have been suggested for use as stabilizers of substrates in conjunction with planned filling and sea wall construction.


Author(s):  
Y Su ◽  
H Wang ◽  
W Chen

The design, fabrication, and testing of a novel bidirectional magnetic microactuator were presented in the paper. The microactuator is composed of an integrated planar coil and a flexible polydimethyl siloxane (PDMS) diaphragm with embedded CoNiMnP-based permanent magnet arrays. There is a 7 × 7 array of magnets in a unit. The PDMS diaphragm is 2 mm × mm × 40 μm and the magnet post is 50 × 50 × 20 μm. Computer simulation was applied to verify the geometrical parameters. Electroplating under external magnetic field is carried out to improve the magnetic properties of the electroplated magnet, including coercivity, remanence and magnetic energy, and so on. The measured maximum coercivity, remanence and maximum magnetic energy were 2623 Oe (208.73 kA/m), 0.2 T (2000 G), and 10.15 kJ/m3 with the magnetic post, respectively. Moreover, and the deflection of the PDMS membrane is proportional to the exciting current. In a case of 0.35 A current, the maximum deflection of the membrane is 45 μm. Adjusting the electroplating mould results in the variation of the electroplated structure, thus the calibration of the microactuator. Due to the biomedical compatibility and simplicity of the fabrication, the flexible membrane-based microactuator is potential to be used as micropump and optical switch, the microelectromechanical system applications.


1902 ◽  
Vol 149 (1902) ◽  
pp. 205-207
Author(s):  
F W WENTWORTH SHIELDS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document