A New Approach for Filtering and Derivative Estimation of Noisy Signals

2013 ◽  
Vol 33 (2) ◽  
pp. 589-598 ◽  
Author(s):  
Z. G. Li ◽  
Z. H. Ma
2021 ◽  
Author(s):  
Sudeshna Pal

A novel approach to nonparametric spectral density estimation has been proposed. The approach is based on a new evaluation criterion called autocorrelation mean square error (AMSE) for power spectral density (PSD) estimates of available finite length data. Minimization of this criterion not only provides the optimum segmentation for existing PSDE approaches , but also provides a new optimum windowing within the segments that can be combined additionally to the existing methods of nonparametric PSDE. Furthermore, the problem of frequency resolution in existing PSDE methods for noisy signals has been analyzed. In the existing approaches, the additive noise and the finiteness of data which are the causes of the original loss of the frequency resolution are not treated separately. The suggested new approach to spectrum estimation takes advantage of these two different causes of the problem and tackles the problem of resolution in two steps. First, the method optimally reduces noise interference with the signal via minimum noiseless description length (MNDL). The new power spectrum estimation MNDL-Periodogram of the denoised signal is then computed via conventional indirect periodogram to improve frequency resolution.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 148500-148509
Author(s):  
Jingdong Yu ◽  
Shanhai Jin ◽  
Xiaodan Wang ◽  
Xiaogang Xiong ◽  
Zhengxiang Lv ◽  
...  

2021 ◽  
Author(s):  
Sudeshna Pal

A novel approach to nonparametric spectral density estimation has been proposed. The approach is based on a new evaluation criterion called autocorrelation mean square error (AMSE) for power spectral density (PSD) estimates of available finite length data. Minimization of this criterion not only provides the optimum segmentation for existing PSDE approaches , but also provides a new optimum windowing within the segments that can be combined additionally to the existing methods of nonparametric PSDE. Furthermore, the problem of frequency resolution in existing PSDE methods for noisy signals has been analyzed. In the existing approaches, the additive noise and the finiteness of data which are the causes of the original loss of the frequency resolution are not treated separately. The suggested new approach to spectrum estimation takes advantage of these two different causes of the problem and tackles the problem of resolution in two steps. First, the method optimally reduces noise interference with the signal via minimum noiseless description length (MNDL). The new power spectrum estimation MNDL-Periodogram of the denoised signal is then computed via conventional indirect periodogram to improve frequency resolution.


2021 ◽  
Author(s):  
Daniel J. Marston ◽  
Scott Slattery ◽  
Klaus M. Hahn ◽  
Denis Tsygankov

AbstractThe accuracy of biosensor ratio imaging is limited by signal/noise. Signals can be weak when biosensor concentrations must be limited to avoid cell perturbation. This can be especially problematic in imaging of low volume regions, e.g., along the cell edge. The cell edge is an important imaging target in studies of cell motility. We show how the division of fluorescence intensities with low signal-to-noise at the cell edge creates specific artifacts due to background subtraction and division by small numbers, and that simply improving the accuracy of background subtraction cannot address these issues. We propose a new approach where, rather than simply subtracting background from the numerator and denominator, we subtract a noise correction factor (NCF) from the numerator only. This NCF can be derived from the analysis of noise distribution in the background near the cell edge or from ratio measurements in the cell regions where signal-to-noise is high. We test the performance of the method first by examining two noninteracting fluorophores distributed evenly in cells. This generated a uniform ratio that could provide a ground truth. We then analyzed actual protein activities reported by a single chain biosensor for the guanine exchange factor Asef, and a dual chain biosensor for the GTPase Cdc42. The reduction of edge artifacts revealed persistent Asef activity in a narrow band (∼640 nm wide) immediately adjacent to the cell edge. For Cdc42, the NCF method revealed an artefact that would have been obscured by traditional background subtraction approaches.


Author(s):  
Daniel J. Marston ◽  
Scott D. Slattery ◽  
Klaus M. Hahn ◽  
Denis Tsygankov

The accuracy of biosensor ratio imaging is limited by signal/noise. Signals can be weak when biosensor concentrations must be limited to avoid cell perturbation. This can be especially problematic in imaging of low volume regions, e.g., along the cell edge. The cell edge is an important imaging target in studies of cell motility. We show how the division of fluorescence intensities with low signal-to-noise at the cell edge creates specific artifacts due to background subtraction and division by small numbers, and that simply improving the accuracy of background subtraction cannot address these issues. We propose a new approach where, rather than simply subtracting background from the numerator and denominator, we subtract a noise correction factor (NCF) from the numerator only. This NCF can be derived from the analysis of noise distribution in the background near the cell edge or from ratio measurements in the cell regions where signal-to-noise is high. We test the performance of the method first by examining two noninteracting fluorophores distributed evenly in cells. This generated a uniform ratio that could provide a ground truth. We then analyzed actual protein activities reported by a single chain biosensor for the guanine exchange factor (GEF) Asef, and a dual chain biosensor for the GTPase Cdc42. The reduction of edge artifacts revealed persistent Asef activity in a narrow band (∼640 nm wide) immediately adjacent to the cell edge. For Cdc42, the NCF method revealed an artifact that would have been obscured by traditional background subtraction approaches.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Sign in / Sign up

Export Citation Format

Share Document