scholarly journals Noncoding RNAs in the regulation of skeletal muscle biology in health and disease

2016 ◽  
Vol 94 (8) ◽  
pp. 853-866 ◽  
Author(s):  
Adriana Simionescu-Bankston ◽  
Ashok Kumar
2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Mao Nie ◽  
Zhong-Liang Deng ◽  
Jianming Liu ◽  
Da-Zhi Wang

A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs’ functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.


2014 ◽  
Vol 25 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Marjan M. Tajrishi ◽  
Timothy S. Zheng ◽  
Linda C. Burkly ◽  
Ashok Kumar

2017 ◽  
Vol 216 (11) ◽  
pp. 3497-3507 ◽  
Author(s):  
Ronald L Neppl ◽  
Chia-Ling Wu ◽  
Kenneth Walsh

Skeletal muscle exhibits remarkable plasticity in its ability to modulate its mass in response to the physiologic changes associated with functional use, systemic disease, and aging. Although a gradual loss of muscle mass normally occurs with advancing age, its increasingly rapid progression results in sarcopenia in a subset of individuals. The identities of muscle-enriched, long noncoding RNAs that regulate this process are unknown. Here, we identify a long noncoding RNA, named Chronos, whose expression in muscle is positively regulated with advancing age and negatively regulated during Akt1-mediated growth. Inhibition of Chronos induces myofiber hypertrophy both in vitro and in vivo, in part, through the epigenetic modulation of Bmp7 signaling.


2015 ◽  
Vol 46 (3) ◽  
pp. 807-818 ◽  
Author(s):  
Emmanuel T. Osei ◽  
Laura Florez-Sampedro ◽  
Wim Timens ◽  
Dirkje S. Postma ◽  
Irene H. Heijink ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease and is currently the fourth leading cause of death worldwide. Chronic inflammation and repair processes in the small airways are characteristic of COPD. Despite extensive efforts from researchers and industry, there is still no cure for COPD, hence an urgent need for new therapeutic alternatives. MicroRNAs are such an option; they are small noncoding RNAs involved in gene regulation. Their importance has been shown with respect to maintaining the balance between health and disease. Although previous reviews have discussed the expression of microRNAs related to lung disease, a detailed discussion regarding the function of differential miRNA expression in the pathogenesis of COPD is lacking.In this review we link the expression of microRNAs to different features of COPD and explain their importance in the pathogenesis of this disease. We further discuss their potential to contribute to the development of future therapeutic strategies.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Petrany ◽  
Casey O. Swoboda ◽  
Chengyi Sun ◽  
Kashish Chetal ◽  
Xiaoting Chen ◽  
...  

AbstractWhile the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.


2017 ◽  
Vol 14 (127) ◽  
pp. 20160992 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
T. Roose ◽  
G. F. Clough ◽  
P. Schneider

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo . Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.


Sign in / Sign up

Export Citation Format

Share Document