Testing for linkage disequilibrium in the New Zealand radiata pine breeding population

2003 ◽  
Vol 108 (2) ◽  
pp. 292-298 ◽  
Author(s):  
S. Kumar ◽  
C. Echt ◽  
P. L. Wilcox ◽  
T. E. Richardson
2019 ◽  
Vol 68 (1) ◽  
pp. 9-13
Author(s):  
C.J.A Shelbourne

Abstract Advanced generation selection (AS) for the future breeding population (BP), becam a focus of tree breeders‘ thinking in the mid 1970s., particularly with Pinus radiata in New Zealand (NZ). Multitrait selection among families was generally recommen­ded, but this reduced genetic variation in the future breeding population. From Shaw and Hood‘s (1985) stochastic simulation, later confirmed by Rosvall, Lindgren and Mullin‘s (1998) stochastic simulation on Norway spruce, it was realised that selecting within families rather than among families of a new breeding population avoided any reduction of genetic variation in the BP. Heritabilities were low for seedling within-family selection but clonal replication within families should strongly increase heritabilities. Gains from cloned versus seedling populations of equal numbers of plants were also deterministically simulated (Shelbourne et al. 2007), and balanced (within-family) selec­tion gains from the cloned populations were all higher than seedling equivalents at heritabilities of 0.5 and under. The late P.A. Jefferson‘s (2016) Breeding Management Plan (which will be soon superceded) contains a re description of New Zealand (NZ) radiata pine breeding. Selections were made in crosses from the earlier program and OP see and scion mate­rial were collected from all 360 selections. OP family tests of selections have been planted at 11 sites in NZ and 7 in New South Wales and Tasmania, and scions of their female parents have all been grafted at an archive. Crosses made in the archive are being cloned and the programme was committed to within-family selection to retain genetic variance for the future closed breeding population. Clonally-replicated testing paired with within-family selection is the solution for balancing long-term gain and diversity in BP and PP.


Author(s):  
Mark O. Kimberley ◽  
Dave J. Cown ◽  
Russell B. McKinley ◽  
John R. Moore ◽  
Leslie J. Dowling

BMC Genetics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Vincent Prieur ◽  
Shannon M. Clarke ◽  
Luiz F. Brito ◽  
John C. McEwan ◽  
Michael A. Lee ◽  
...  

2016 ◽  
Vol 29 (3) ◽  
pp. 209-216 ◽  
Author(s):  
Graham C. Parker ◽  
Kalinka Rexer-Huber ◽  
David Thompson

AbstractPopulations of grey petrels have declined globally due to both incidental capture in commercial fisheries and predation by introduced mammals at breeding sites. In the New Zealand region, grey petrels only breed on Campbell and Antipodes islands. Rats were successfully eradicated from Campbell Island in 2001. We assessed the spatial extent and conducted the first quantitative population estimate of the grey petrel population on Campbell Island and surrounding islets. There was an estimated c. 96 pairs (95% CI: 83, 109) of breeding grey petrels from the four colonies. Since work was conducted during the middle of the chick-rearing stage, this is an underestimate of the breeding population. The Campbell Island grey petrel breeding population remains small. Our study provides a baseline for future population estimates of grey petrels on Campbell Island.


2013 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
STEFANIE M. H. ISMAR ◽  
TOM TRNSKI ◽  
TONY BEAUCHAMP ◽  
SARAH J. BURY ◽  
DAVID WILSON ◽  
...  

SummaryNo published information is available on the foraging ecology and choice of feeding habitat of New Zealand’s rarest breeding bird: the New Zealand Fairy Tern (NZFT) Sternula nereis davisae. To address this gap, we conducted an assessment of the largest remaining breeding population at Mangawhai Harbour, Northland, New Zealand, during the chick-rearing period of the 2010/2011 breeding season. We combined visual tracking of birds with prey surveys and stable isotope analyses, and we present the first quantitative assessment of NZFT foraging. We recorded 405 foraging dives that show NZFT foraging habitat includes the water edges, shallow channels, and pools on the tidal flats of mangrove-lined (Avicennia marina var. resinifera) parts of the estuary; tidal pools on mud- and sandflats in the mid-estuary and lower harbour; the shallow margins of the dredged main channel in the lower harbour; the oxbow lagoons on the sand spit; and coastal shallows. Our study identifies the mangrove-lined highly tidal and shallow mid-estuary and the lagoon on the sand spit as foraging hotspots for the Mangawhai breeding population of the NZFT. The prey survey employed a seine-net sampling method at identified NZFT foraging sites and yielded 4,367 prey-sized fish of 11 species, two of which had not previously been reported in Mangawhai Harbour, as well as numerous shrimps. The most abundant fish were gobies of the genus Favonigobius. Our stable isotope results highlight gobies as the most important prey for NZFT chick rearing, also indicating that flounder Rhombosolea sp. contribute to NZFT diet. We raise the possibility that shrimps may also constitute a substantial diet component for NZFT, potentially providing up to 21% of diet mass for adult birds. While our results provide a first basis to understanding the feeding ecology of NZFT during their breeding season in order to facilitate conservation planning, further research is required to address inter-annual variation and to identify key foraging grounds for this Critically Endangered bird at other breeding sites.


2015 ◽  
Vol 45 (12) ◽  
pp. 1676-1687 ◽  
Author(s):  
Mark O. Kimberley ◽  
John R. Moore ◽  
Heidi S. Dungey

Realised genetic gain for radiata pine (Pinus radiata D. Don) was estimated using data from 46 installations of three series of block-plot trials spanning a wide range of site types throughout New Zealand. These trials contained 63 unique seedlots with different levels of genetic improvement. Realised genetic gain was quantified using two measures of productivity: site index and 300 Index (a measure of volume productivity). The level of genetic improvement of each seedlot was determined by its GF Plus rating, a genetic rating system based on breeding values used for New Zealand radiata pine. There was a positive relationship between GF Plus rating and both productivity measures. Differences of 25% in total standing volume at age 30 years and of 5.6% in site index were found between unimproved (GF Plus 9.9) and highly improved (GF Plus 25) seedlots. Each unit increase in GF Plus rating was associated with a 1.51% increase in volume growth rate. In absolute terms, the magnitude of the increase was greater on more productive sites compared with less productive sites, although in percentage terms, it varied little between sites or regions. Quantification of genetic gain in this manner enables it to be easily incorporated into existing growth and yield simulators.


Sign in / Sign up

Export Citation Format

Share Document