Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus

2011 ◽  
Vol 123 (8) ◽  
pp. 1425-1431 ◽  
Author(s):  
Stefano Pavan ◽  
Adalgisa Schiavulli ◽  
Michela Appiano ◽  
Angelo R. Marcotrigiano ◽  
Fabrizio Cillo ◽  
...  
2008 ◽  
Vol 21 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Yuling Bai ◽  
Stefano Pavan ◽  
Zheng Zheng ◽  
Nana F. Zappel ◽  
Anja Reinstädler ◽  
...  

The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2–mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.


2010 ◽  
Vol 23 (5) ◽  
pp. 578-584 ◽  
Author(s):  
Anna Wawrzynska ◽  
Natalie L. Rodibaugh ◽  
Roger W. Innes

Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)–inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.


2021 ◽  
Author(s):  
Megan A Phillips ◽  
Jacob L Steenwyk ◽  
Xing-Xing Shen ◽  
Antonis Rokas

AbstractThe DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. While loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49 / 52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between 6 and 22 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with high levels of MMR gene loss exhibit increased numbers of monomer repeats, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.


2005 ◽  
Vol 138 (2) ◽  
pp. 1027-1036 ◽  
Author(s):  
Katrina Ramonell ◽  
Marta Berrocal-Lobo ◽  
Serry Koh ◽  
Jinrong Wan ◽  
Herb Edwards ◽  
...  

2011 ◽  
Vol 24 (6) ◽  
pp. 694-705 ◽  
Author(s):  
Matthew J. Moscou ◽  
Nick Lauter ◽  
Rico A. Caldo ◽  
Dan Nettleton ◽  
Roger P. Wise

Barley Mildew resistance locus a (Mla) is a major determinant of immunity to the powdery mildew pathogen, Blumeria graminis f. sp. hordei. Alleles of Mla encode cytoplasmic- and membrane-localized coiled-coil, nucleotide binding site, leucine-rich repeat proteins that mediate resistance when complementary avirulence effectors (AVRa) are present in the pathogen. Presence of an appropriate AVRa protein triggers nuclear relocalization of MLA, in which MLA binds repressing host transcription factors. Timecourse expression profiles of plants harboring Mla1, Mla6, and Mla12 wild-type alleles versus paired loss-of-function mutants were compared to discover conserved transcriptional targets of MLA and downstream signaling cascades. Pathogen-dependent gene expression was equivalent or stronger in susceptible plants at 20 h after inoculation (HAI) and was attenuated at later timepoints, whereas resistant plants exhibited a time-dependent strengthening of the transcriptional response, increasing in both fold change and the number of genes differentially expressed. Deregulation at 20 HAI implicated 16 HAI as a crucial point in determining the future trajectory of this interaction and was interrogated by quantitative analysis. In total, 28 potential transcriptional targets of the MLA regulon were identified. These candidate targets possess a diverse set of predicted functions, suggesting that multiple pathways are required to mediate the hypersensitive reaction.


2021 ◽  
Author(s):  
Stefan Kusch ◽  
Lamprinos Frantzeskakis ◽  
Birthe D. Lassen ◽  
Florian Kümmel ◽  
Lina Pesch ◽  
...  

Hosts and pathogens typically engage in an evolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria graminis f.sp. hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence is associated with a distinctive pattern of adaptive mutations, including small-sized (8-40 kb) deletions, one of which likely affects spore morphology. The detected mutational spectrum comprises the same loci in at least two independent mlo-virulent isolates, indicating convergent multigenic evolution. This work highlights the dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.


Genome ◽  
2018 ◽  
Vol 61 (10) ◽  
pp. 703-712 ◽  
Author(s):  
Daeun Kim ◽  
Bingkui Jin ◽  
Byoung Il Je ◽  
Youngmi Choi ◽  
Byung Sup Kim ◽  
...  

Reductions in growth and quality due to powdery mildew (PM) disease cause significant economic losses in tomato production. Oidium neolycopersici was identified as the fungal species responsible for tomato PM disease in South Korea in the present study, based on morphological and internal transcribed spacer DNA sequence analyses of PM samples collected from two remote regions (Muju and Miryang). The genes involved in resistance to this pathogen in the tomato accession ‘KNU-12’ (Solanum lycopersicum var. cerasiforme) were evaluated, and the inheritance of PM resistance in ‘KNU-12’ was found to be conferred via simple Mendelian inheritance of a mutant allele of the PM susceptibility locus Ol-2 (SlMlo1). Full-length cDNA analysis of this newly identified mutant allele (Slmlo1.1) showed that a 1-bp deletion in its coding region led to a frameshift mutation possibly resulting in SlMlo1 loss-of-function. An alternatively spliced transcript of Slmlo1.1 was observed in the cDNA sequences of ‘KNU-12’, but its direct influence on PM resistance is unclear. A derived cleaved amplified polymorphic sequence (dCAPS) and a high-resolution melting (HRM) marker were developed based on the 1-bp deletion in Slmlo1.1, and could be used for efficient marker-assisted selection (MAS) using ‘KNU-12’ as the source for durable and broad-spectrum resistance to PM.


2014 ◽  
Vol 16 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Dongli Gao ◽  
Michela Appiano ◽  
Robin P. Huibers ◽  
Annelies E. H. M. Loonen ◽  
Richard G. F. Visser ◽  
...  

2015 ◽  
Vol 140 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Xianqin Qiu ◽  
Hongying Jian ◽  
Qigang Wang ◽  
Kaixue Tang ◽  
Manzhu Bao

Rose (Rosa hybrida) is one of the most economically important ornamentals worldwide. Powdery mildew (Podosphaera pannosa) is a major disease in cut and potted roses. In dicots such as arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), and tomato (Solanum lycopersicum), loss-of-function mutations in mildew resistance locus o (Mlo) genes confer high levels of broad-spectrum resistance to powdery mildew. Here, we present spatiotemporal expression patterns of four Mlo genes from R. hybrida based on real-time fluorescence quantitative polymerase chain reaction (qPCR). Phylogenetically closely related R. hybrida mildew resistance locus o (RhMLO) genes showed similar or overlapping tissue specificity and analogous responsiveness to external stimuli. RhMLO1 and RhMLO2 transcriptional levels were upregulated more than 2-fold by external stimuli, especially by inoculation with powdery mildew fungus P. pannosa at early time points. This phenomenon was not found for RhMLO3 or RhMLO4. The results indicated that RhMLO1 and RhMLO2 might play important roles in rose–powdery mildew pathogen interactions. Our findings may provide useful information for the study of mechanisms of powdery mildew susceptibility in rose.


Sign in / Sign up

Export Citation Format

Share Document