scholarly journals The performance of phenomic selection depends on the genetic architecture of the target trait

Author(s):  
Xintian Zhu ◽  
Hans Peter Maurer ◽  
Mario Jenz ◽  
Volker Hahn ◽  
Arno Ruckelshausen ◽  
...  

Abstract Key message The phenomic predictive ability depends on the genetic architecture of the target trait, being high for complex traits and low for traits with major QTL. Abstract Genomic selection is a powerful tool to assist breeding of complex traits, but a limitation is the costs required for genotyping. Recently, phenomic selection has been suggested, which uses spectral data instead of molecular markers as predictors. It was shown to be competitive with genomic prediction, as it achieved predictive abilities as high or even higher than its genomic counterpart. The objective of this study was to evaluate the performance of phenomic prediction for triticale and the dependency of the predictive ability on the genetic architecture of the target trait. We found that for traits with a complex genetic architecture, like grain yield, phenomic prediction with NIRS data as predictors achieved high predictive abilities and performed better than genomic prediction. By contrast, for mono- or oligogenic traits, for example, yellow rust, marker-based approaches achieved high predictive abilities, while those of phenomic prediction were very low. Compared with molecular markers, the predictive ability obtained using NIRS data was more robust to varying degrees of genetic relatedness between the training and prediction set. Moreover, for grain yield, smaller training sets were required to achieve a similar predictive ability for phenomic prediction than for genomic prediction. In addition, our results illustrate the potential of using field-based spectral data for phenomic prediction. Overall, our result confirmed phenomic prediction as an efficient approach to improve the selection gain for complex traits in plant breeding.

2020 ◽  
Author(s):  
Nourollah Ahmadi ◽  
Tuong-Vi Cao ◽  
Julien Frouin ◽  
Gareth J. Norton ◽  
Adam H. Price

AbstractMany rice-growing areas are affected by high concentrations of arsenic (As). Rice varieties that prevent As uptake and/or accumulation can mitigate As threats to human health. Genomic selection is known to facilitate rapid selection of superior genotypes for complex traits. We explored the predictive ability (PA) of genomic prediction with single-environment models, accounting or not for trait-specific markers, multi-environment models, and multi-trait and multi-environment models, using the genotypic (1600 K SNP) and phenotypic (grain arsenic content, grain yield and days to flowering, observed under two irrigation systems over two years) data of the Bengal and Assam Aus Panel (BAAP). Under the base-line single environment model, PA of up to 0.707 and 0.654 was obtained for grain yield and grain As respectively, the three prediction methods (BL, GBLUP and RKHS) considered performed similarly, and marker selection based on linkage disequilibrium allowed to reduce the number of SNP to 17 K, without negative effect on PA of genomic predictions. Single environment models giving distinct weight to trait-specific markers in the genomic relationship matrix outperformed the base-line models up to 32%. Multi-environment models, accounting for G × E interactions, and multi-trait and multi-environment models outperformed the base-line models by up to 47% and 61%, respectively. Among the multi-trait and multi-environment models, the Bayesian multi-output regressor stacking function obtained the highest PA (0.831 for grain As) with much higher efficiency for computing time. These findings pave the way for breeding for As-tolerance in the progenies of biparental crosses involving members of the BAAP. It also applies to breeding for other complex traits evaluated under multiple environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Abdullah Al Bari ◽  
Ping Zheng ◽  
Indalecio Viera ◽  
Hannah Worral ◽  
Stephen Szwiec ◽  
...  

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy.


2020 ◽  
Vol 10 (3) ◽  
pp. 1113-1124 ◽  
Author(s):  
Madhav Bhatta ◽  
Lucia Gutierrez ◽  
Lorena Cammarota ◽  
Fernanda Cardozo ◽  
Silvia Germán ◽  
...  

Plant breeders regularly evaluate multiple traits across multiple environments, which opens an avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait (MT) genomic prediction model through evaluating several strategies of incorporating multiple traits (eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes (CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However, the predictive ability for agronomic traits was considerably increased when partially phenotyped lines (MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively. Therefore, complex traits such as grain yield are better predicted when correlated traits are used. Similarly, a considerable increase in the predictive ability of malting quality traits was observed when correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1 models. Additionally, the higher predictive ability for new environments was obtained for all traits using the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly and easy to measure traits) collected throughout breeding programs which could assist in speeding up breeding cycles.


PLoS Genetics ◽  
2010 ◽  
Vol 6 (9) ◽  
pp. e1001139 ◽  
Author(s):  
Ben J. Hayes ◽  
Jennie Pryce ◽  
Amanda J. Chamberlain ◽  
Phil J. Bowman ◽  
Mike E. Goddard

2021 ◽  
Vol 12 ◽  
Author(s):  
Owen M. Powell ◽  
Kai P. Voss-Fels ◽  
David R. Jordan ◽  
Graeme Hammer ◽  
Mark Cooper

Genomic prediction of complex traits across environments, breeding cycles, and populations remains a challenge for plant breeding. A potential explanation for this is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE) interactions generate allele substitution effects that are non-stationary across different contexts. Such non-stationary effects of alleles are either ignored or assumed to be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic prediction. The implicit capture of non-stationary effects of alleles requires the G2P map to be re-estimated across different contexts. We discuss the development and application of hierarchical G2P maps that explicitly capture non-stationary effects of alleles and have successfully increased short-term prediction accuracy in plant breeding. These hierarchical G2P maps achieve increases in prediction accuracy by allowing intermediate processes such as other traits and environmental factors and their interactions to contribute to complex trait variation. However, long-term prediction remains a challenge. The plant breeding community should undertake complementary simulation and empirical experiments to interrogate various hierarchical G2P maps that connect GxG and GxE interactions simultaneously. The existing genetic correlation framework can be used to assess the magnitude of non-stationary effects of alleles and the predictive ability of these hierarchical G2P maps in long-term, multi-context genomic predictions of complex traits in plant breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Harsimardeep S. Gill ◽  
Jyotirmoy Halder ◽  
Jinfeng Zhang ◽  
Navreet K. Brar ◽  
Teerath S. Rai ◽  
...  

Genomic prediction is a promising approach for accelerating the genetic gain of complex traits in wheat breeding. However, increasing the prediction accuracy (PA) of genomic prediction (GP) models remains a challenge in the successful implementation of this approach. Multivariate models have shown promise when evaluated using diverse panels of unrelated accessions; however, limited information is available on their performance in advanced breeding trials. Here, we used multivariate GP models to predict multiple agronomic traits using 314 advanced and elite breeding lines of winter wheat evaluated in 10 site-year environments. We evaluated a multi-trait (MT) model with two cross-validation schemes representing different breeding scenarios (CV1, prediction of completely unphenotyped lines; and CV2, prediction of partially phenotyped lines for correlated traits). Moreover, extensive data from multi-environment trials (METs) were used to cross-validate a Bayesian multi-trait multi-environment (MTME) model that integrates the analysis of multiple-traits, such as G × E interaction. The MT-CV2 model outperformed all the other models for predicting grain yield with significant improvement in PA over the single-trait (ST-CV1) model. The MTME model performed better for all traits, with average improvement over the ST-CV1 reaching up to 19, 71, 17, 48, and 51% for grain yield, grain protein content, test weight, plant height, and days to heading, respectively. Overall, the empirical analyses elucidate the potential of both the MT-CV2 and MTME models when advanced breeding lines are used as a training population to predict related preliminary breeding lines. Further, we evaluated the practical application of the MTME model in the breeding program to reduce phenotyping cost using a sparse testing design. This showed that complementing METs with GP can substantially enhance resource efficiency. Our results demonstrate that multivariate GS models have a great potential in implementing GS in breeding programs.


2018 ◽  
Author(s):  
Aditi Bhandari ◽  
Jérôme Bartholomé ◽  
Tuong-Vi Cao ◽  
Nilima Kumari ◽  
Julien frouin ◽  
...  

AbstractDeveloping high yielding rice varieties that are tolerant to drought stress is crucial for the sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selection (GS) promises to be an effective breeding option for these complex traits. We evaluated the effectiveness of two rather new options in the implementation of GS: trait and environment-specific marker selection and the use of multi-environment prediction models. A reference population of 280 rainfed lowland accessions endowed with 215k SNP markers data was phenotyped under a favorable and two managed drought environments. Trait-specific SNP subsets (28k) were selected for each trait under each environment, using results of GWAS performed with the complete genotype dataset. Performances of single-environment and multi-environment genomic prediction models were compared using kernel regression based methods (GBLUP and RKHS) under two cross validation scenario: availability (CV2) or not (CV1) of phenotypic data for the validation set, in one of the environments. The most realistic trait-specific marker selection strategy achieved predictive ability (PA) of genomic prediction was up to 22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Tolerance to drought stress was up to 32% better predicted by multi-environment models (especially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the multi-environment models achieved similar PA than the single-environment predictions. We also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even in a population of low LD extent, provided marker selection is based on pairwise LD. The implications of these findings for breeding for drought tolerance are discussed. The most resource sparing option would be accurate phenotyping of the reference population in a favorable environment and under a managed drought, while the candidate population would be phenotyped only under one of those environments.


2007 ◽  
Vol 1 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Rongling Wu ◽  
Wei Hou ◽  
Yuehua Cui ◽  
Hongying Li ◽  
Tian Liu ◽  
...  

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Lingzhao Fang ◽  
Goutam Sahana ◽  
Peipei Ma ◽  
Guosheng Su ◽  
Ying Yu ◽  
...  

2021 ◽  
Vol 288 (1956) ◽  
pp. 20210693
Author(s):  
Suzanne E. McGaugh ◽  
Aaron J. Lorenz ◽  
Lex E. Flagel

Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.


Sign in / Sign up

Export Citation Format

Share Document