scholarly journals Genomic prediction of arsenic tolerance and grain yield in rice. Contribution of trait-specific markers and multi environment models

2020 ◽  
Author(s):  
Nourollah Ahmadi ◽  
Tuong-Vi Cao ◽  
Julien Frouin ◽  
Gareth J. Norton ◽  
Adam H. Price

AbstractMany rice-growing areas are affected by high concentrations of arsenic (As). Rice varieties that prevent As uptake and/or accumulation can mitigate As threats to human health. Genomic selection is known to facilitate rapid selection of superior genotypes for complex traits. We explored the predictive ability (PA) of genomic prediction with single-environment models, accounting or not for trait-specific markers, multi-environment models, and multi-trait and multi-environment models, using the genotypic (1600 K SNP) and phenotypic (grain arsenic content, grain yield and days to flowering, observed under two irrigation systems over two years) data of the Bengal and Assam Aus Panel (BAAP). Under the base-line single environment model, PA of up to 0.707 and 0.654 was obtained for grain yield and grain As respectively, the three prediction methods (BL, GBLUP and RKHS) considered performed similarly, and marker selection based on linkage disequilibrium allowed to reduce the number of SNP to 17 K, without negative effect on PA of genomic predictions. Single environment models giving distinct weight to trait-specific markers in the genomic relationship matrix outperformed the base-line models up to 32%. Multi-environment models, accounting for G × E interactions, and multi-trait and multi-environment models outperformed the base-line models by up to 47% and 61%, respectively. Among the multi-trait and multi-environment models, the Bayesian multi-output regressor stacking function obtained the highest PA (0.831 for grain As) with much higher efficiency for computing time. These findings pave the way for breeding for As-tolerance in the progenies of biparental crosses involving members of the BAAP. It also applies to breeding for other complex traits evaluated under multiple environments.

2021 ◽  
Vol 11 ◽  
Author(s):  
Diego Jarquin ◽  
Natalia de Leon ◽  
Cinta Romay ◽  
Martin Bohn ◽  
Edward S. Buckler ◽  
...  

Genomic prediction provides an efficient alternative to conventional phenotypic selection for developing improved cultivars with desirable characteristics. New and improved methods to genomic prediction are continually being developed that attempt to deal with the integration of data types beyond genomic information. Modern automated weather systems offer the opportunity to capture continuous data on a range of environmental parameters at specific field locations. In principle, this information could characterize training and target environments and enhance predictive ability by incorporating weather characteristics as part of the genotype-by-environment (G×E) interaction component in prediction models. We assessed the usefulness of including weather data variables in genomic prediction models using a naïve environmental kinship model across 30 environments comprising the Genomes to Fields (G2F) initiative in 2014 and 2015. Specifically four different prediction scenarios were evaluated (i) tested genotypes in observed environments; (ii) untested genotypes in observed environments; (iii) tested genotypes in unobserved environments; and (iv) untested genotypes in unobserved environments. A set of 1,481 unique hybrids were evaluated for grain yield. Evaluations were conducted using five different models including main effect of environments; general combining ability (GCA) effects of the maternal and paternal parents modeled using the genomic relationship matrix; specific combining ability (SCA) effects between maternal and paternal parents; interactions between genetic (GCA and SCA) effects and environmental effects; and finally interactions between the genetics effects and environmental covariates. Incorporation of the genotype-by-environment interaction term improved predictive ability across all scenarios. However, predictive ability was not improved through inclusion of naive environmental covariates in G×E models. More research should be conducted to link the observed weather conditions with important physiological aspects in plant development to improve predictive ability through the inclusion of weather data.


Author(s):  
Xintian Zhu ◽  
Hans Peter Maurer ◽  
Mario Jenz ◽  
Volker Hahn ◽  
Arno Ruckelshausen ◽  
...  

Abstract Key message The phenomic predictive ability depends on the genetic architecture of the target trait, being high for complex traits and low for traits with major QTL. Abstract Genomic selection is a powerful tool to assist breeding of complex traits, but a limitation is the costs required for genotyping. Recently, phenomic selection has been suggested, which uses spectral data instead of molecular markers as predictors. It was shown to be competitive with genomic prediction, as it achieved predictive abilities as high or even higher than its genomic counterpart. The objective of this study was to evaluate the performance of phenomic prediction for triticale and the dependency of the predictive ability on the genetic architecture of the target trait. We found that for traits with a complex genetic architecture, like grain yield, phenomic prediction with NIRS data as predictors achieved high predictive abilities and performed better than genomic prediction. By contrast, for mono- or oligogenic traits, for example, yellow rust, marker-based approaches achieved high predictive abilities, while those of phenomic prediction were very low. Compared with molecular markers, the predictive ability obtained using NIRS data was more robust to varying degrees of genetic relatedness between the training and prediction set. Moreover, for grain yield, smaller training sets were required to achieve a similar predictive ability for phenomic prediction than for genomic prediction. In addition, our results illustrate the potential of using field-based spectral data for phenomic prediction. Overall, our result confirmed phenomic prediction as an efficient approach to improve the selection gain for complex traits in plant breeding.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Theo Meuwissen ◽  
Irene van den Berg ◽  
Mike Goddard

Abstract Background Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a computationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) mapping precision. Methods The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects selected by the model. Computational speed is improved by a Metropolis–Hastings sampling that directs computations to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data contained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein percentage traits. Results The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior probability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it was clear that many of the discovered QTL were the same across the five dairy traits. Conclusions Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-mapping of QTL.


2011 ◽  
Vol 93 (3) ◽  
pp. 203-219 ◽  
Author(s):  
KATHRYN E. KEMPER ◽  
DAVID L. EMERY ◽  
STEPHEN C. BISHOP ◽  
HUTTON ODDY ◽  
BENJAMIN J. HAYES ◽  
...  

SummaryGenetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep was artificially infected with Trichostrongylus colubriformis (n=3326) and then Haemonchus contortus (n=2669) to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50 BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were genotyped for the same SNP to assess the results obtained from the first population. We used principal components from the genomic relationship matrix among genotyped individuals to account for population stratification, and a novel approach to directly account for the sampling error associated with each SNP marker regression. The largest marker effects were estimated to explain an average of 0·48% (T. colubriformis) or 0·08% (H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other complex traits. We also demonstrated that methods which use all markers simultaneously can successfully predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of genomic predictions with breeding values of the industry sires reached a maximum of 0·32. We estimate that effective across-breed predictions of genetic merit with multi-breed populations will require an average marker spacing of approximately 10 kbp.


2014 ◽  
Vol 54 (5) ◽  
pp. 544 ◽  
Author(s):  
N. Moghaddar ◽  
A. A. Swan ◽  
J. H. J. van der Werf

The objective of this study was to predict the accuracy of genomic prediction for 26 traits, including weight, muscle, fat, and wool quantity and quality traits, in Australian sheep based on a large, multi-breed reference population. The reference population consisted of two research flocks, with the main breeds being Merino, Border Leicester (BL), Poll Dorset (PD), and White Suffolk (WS). The genomic estimated breeding value (GEBV) was based on GBLUP (genomic best linear unbiased prediction), applying a genomic relationship matrix calculated from the 50K Ovine SNP chip marker genotypes. The accuracy of GEBV was evaluated as the Pearson correlation coefficient between GEBV and accurate estimated breeding value based on progeny records in a set of genotyped industry animals. The accuracies of weight traits were relatively low to moderate in PD and WS breeds (0.11–0.27) and moderate to relatively high in BL and Merino (0.25–0.63). The accuracy of muscle and fat traits was moderate to relatively high across all breeds (between 0.21 and 0.55). The accuracy of GEBV of yearling and adult wool traits in Merino was, on average, high (0.33–0.75). The results showed the accuracy of genomic prediction depends on trait heritability and the effective size of the reference population, whereas the observed GEBV accuracies were more related to the breed proportions in the multi-breed reference population. No extra gain in within-breed GEBV accuracy was observed based on across breed information. More investigations are required to determine the precise effect of across-breed information on within-breed genomic prediction.


2018 ◽  
Author(s):  
Julien Frouin ◽  
Axel Labeyrie ◽  
Arnaud Boisnard ◽  
Gian Attilio Sacchi ◽  
Nourollah Ahmadi

AbstractThe high concentration of arsenic in the paddy fields and, consequently, in the rice grains is a critical issue in many rice-growing areas. Breeding arsenic tolerant rice varieties that prevent As uptake and its accumulation in the grains is a major mitigation options. However, the genetic control of the trait is complex, involving large number of gene of limited individual effect, and raises the question of the most efficient breeding method. Using data from three years of experiment in a naturally arsenic-reach field, we analysed the performances of the two major breeding methods: conventional, quantitative trait loci based, selection targeting loci involved in arsenic tolerance, and the emerging, genomic selection, predicting genetic values without prior hypotheses on causal relationships between markers and target traits. We showed that once calibrated in a reference population the accuracy of genomic prediction of arsenic content in the grains of the breeding population was rather high, ensuring genetic gains per time unite close to phenotypic selection. Conversely, selection targeting quantitative loci proved to be less robust as, though in agreement with the literature on the genetic bases of arsenic tolerance, few target loci identified in the reference population could be validated in the breeding population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Abdullah Al Bari ◽  
Ping Zheng ◽  
Indalecio Viera ◽  
Hannah Worral ◽  
Stephen Szwiec ◽  
...  

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy.


2020 ◽  
Vol 10 (3) ◽  
pp. 1113-1124 ◽  
Author(s):  
Madhav Bhatta ◽  
Lucia Gutierrez ◽  
Lorena Cammarota ◽  
Fernanda Cardozo ◽  
Silvia Germán ◽  
...  

Plant breeders regularly evaluate multiple traits across multiple environments, which opens an avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait (MT) genomic prediction model through evaluating several strategies of incorporating multiple traits (eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes (CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However, the predictive ability for agronomic traits was considerably increased when partially phenotyped lines (MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively. Therefore, complex traits such as grain yield are better predicted when correlated traits are used. Similarly, a considerable increase in the predictive ability of malting quality traits was observed when correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1 models. Additionally, the higher predictive ability for new environments was obtained for all traits using the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly and easy to measure traits) collected throughout breeding programs which could assist in speeding up breeding cycles.


2021 ◽  
Vol 12 ◽  
Author(s):  
Owen M. Powell ◽  
Kai P. Voss-Fels ◽  
David R. Jordan ◽  
Graeme Hammer ◽  
Mark Cooper

Genomic prediction of complex traits across environments, breeding cycles, and populations remains a challenge for plant breeding. A potential explanation for this is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE) interactions generate allele substitution effects that are non-stationary across different contexts. Such non-stationary effects of alleles are either ignored or assumed to be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic prediction. The implicit capture of non-stationary effects of alleles requires the G2P map to be re-estimated across different contexts. We discuss the development and application of hierarchical G2P maps that explicitly capture non-stationary effects of alleles and have successfully increased short-term prediction accuracy in plant breeding. These hierarchical G2P maps achieve increases in prediction accuracy by allowing intermediate processes such as other traits and environmental factors and their interactions to contribute to complex trait variation. However, long-term prediction remains a challenge. The plant breeding community should undertake complementary simulation and empirical experiments to interrogate various hierarchical G2P maps that connect GxG and GxE interactions simultaneously. The existing genetic correlation framework can be used to assess the magnitude of non-stationary effects of alleles and the predictive ability of these hierarchical G2P maps in long-term, multi-context genomic predictions of complex traits in plant breeding.


Sign in / Sign up

Export Citation Format

Share Document