Structural application of a shape optimization method based on a genetic algorithm

2001 ◽  
Vol 22 (1) ◽  
pp. 57-64 ◽  
Author(s):  
S.Y. Woon ◽  
O.M. Querin ◽  
G.P. Steven
2021 ◽  
Vol 343 ◽  
pp. 04004
Author(s):  
Nenad Petrović ◽  
Nenad Kostić ◽  
Vesna Marjanović ◽  
Ileana Ioana Cofaru ◽  
Nenad Marjanović

Truss optimization has the goal of achieving savings in costs and material while maintaining structural characteristics. In this research a 10 bar truss was structurally optimized in Rhino 6 using genetic algorithm optimization method. Results from previous research where sizing optimization was limited to using only three different cross-sections were compared to a sizing and shape optimization model which uses only those three cross-sections. Significant savings in mass have been found when using this approach. An analysis was conducted of the necessary bill of materials for these solutions. This research indicates practical effects which optimization can achieve in truss design.


2019 ◽  
Vol 9 (20) ◽  
pp. 4366
Author(s):  
Yong-Qiang Wang ◽  
Rong-Heng Zhao ◽  
Ye Liu ◽  
Yi-Zheng Chen ◽  
Xiao-Yi Ma

Shape optimization of single-curvature arch dams using the finite element method (FEM) is often computationally expensive. To reduce the computational burden, this study introduces a new optimization method, combining a genetic algorithm with a sequential Kriging surrogate model (GA-SKSM), for determining the optimal shape of a single-curvature arch dam. At the start of genetic optimization, a KSM was constructed using a small sample set. In each iteration of optimization, the minimizing predictor criterion and low confidence bound criterion were used to collect samples from the domain of interest and accumulate them into a small sample set to update the KSM until the optimization process converged. A practical problem involving the optimization of a single-curvature arch dam was solved using the introduced GA-SKSM, and the performance of the method was compared with that of GA-KSM and GA-FEM methods. The results revealed that the GA-SKSM method required only 5.40% and 12.40% of the number of simulations required by the GA-FEM and GA-KSM methods, respectively. The GA-SKSM method can significantly improve computational efficiency and can serve as a reference for effective optimization of the design of single-curvature arch dams.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Ekaterina Andriushchenko ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


Sign in / Sign up

Export Citation Format

Share Document