On interface conditions on a material singular surface

2019 ◽  
Vol 32 (5) ◽  
pp. 1417-1434
Author(s):  
Andreas Prahs ◽  
Thomas Böhlke
Author(s):  
W. L. Edge

SynopsisThe cubic surfaces in, save for the elliptic cone, are, whatever their singularities, projections of del Pezzo's non-singular surface F, of order 9 in. It is explained how, merely by specifying the geometrical relation of the vertex of projection to F, each cubic surface is obtainable “at a stroke”, without using spaces of intermediate dimensions.


1992 ◽  
Vol 280 ◽  
Author(s):  
J. F. Egler ◽  
N. Otsuka ◽  
K. Mahalingam

ABSTRACTGrowth kinetics on non-singular surfaces were studied by Monte Carlo simulations. In contrast to the growth on singular and vicinal surfaces, the sticking coefficient on the non-singular surfaces was found to decrease with increase of the surface roughness. Simulations of annealing processes showed that surface diffusion of atoms leads to a stationary surface roughness, which is explained by multiple configurations having the lowest energy in the non-singular surface.


2011 ◽  
Vol 16 (8) ◽  
pp. 872-886 ◽  
Author(s):  
Ashutosh Agrawal

Curvature elasticity is used to derive the equilibrium conditions that govern the mechanics of membrane–membrane adhesion. These include the Euler–Lagrange equations and the interface conditions which are derived here for the most general class of strain energies permissible for fluid surfaces. The theory is specialized for homogeneous membranes with quadratic ‘Helfrich’-type energies with non-uniform spontaneous curvatures. The results are employed to solve four-point boundary value problems that simulate the equilibrium shapes of lipid vesicles that adhere to each other. Numerical studies are conducted to investigate the effect of relative sizes, osmotic pressures, and adhesion-induced spontaneous curvature on the morphology of adhered vesicles.


2021 ◽  
pp. 127570
Author(s):  
Fatima Z. Goffi ◽  
Andrii Khrabustovskyi ◽  
Ramakrishna Venkitakrishnan ◽  
Carsten Rockstuhl ◽  
Michael Plum

2003 ◽  
Vol 70 (2) ◽  
pp. 180-190 ◽  
Author(s):  
E. Pan

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.


1992 ◽  
Vol 19 (5) ◽  
pp. 455-474 ◽  
Author(s):  
C.-M. Brauner ◽  
A. Lunardi ◽  
Cl. Schmidt-Lainé

Sign in / Sign up

Export Citation Format

Share Document