Wear behavior of an Al2O3/TiC/TiN micro-nano-composite ceramic cutting tool in high-speed turning of ultra-high-strength steel 300 M

2016 ◽  
Vol 87 (9-12) ◽  
pp. 3301-3306 ◽  
Author(s):  
Dong Wang ◽  
Jun Zhao ◽  
Yan Cao ◽  
Chao Xue ◽  
Yu Bai
2020 ◽  
Vol 206 (1) ◽  
pp. 122-131
Author(s):  
Hui-Ping Zhang ◽  
Zhong-Shi Zhang ◽  
Zhi-Yun Zheng ◽  
Er-Liang Liu

2013 ◽  
Vol 589-590 ◽  
pp. 23-27 ◽  
Author(s):  
Dong Wang ◽  
Jun Zhao ◽  
Xiao Xiao Chen ◽  
Yong Hui Zhou

An experimental investigation of wear mechanisms in high-speed turning of superalloy GH2132 with Al2O3-based ceramic was conducted under dry cutting condition. The tool wear mechanisms were characterized by observation of tool wear morphology using scanning electron microscopy (SEM) and detection of the element distribution of the worn tool surface utilizing energy dispersive X-ray spectroscopy (EDS). The results of turning experiments indicated that the major wear mechanisms of the ceramic cutting tool were synergistic interaction between abrasive wear and adhesive wear, and meanwhile the micro-chipping was also observed. It is also shown that cutting distance of the Al2O3-TiC ceramic cutting tool at the speed of 420 m/min was higher than that of the speed of 360 m/min and 540 m/min.


2013 ◽  
Vol 319 ◽  
pp. 79-83
Author(s):  
Zhi Jie Lü ◽  
Ming Feng Ding ◽  
Jun Zhao

In this paper, a type of Si3N4/TiC micro-nano-composite ceramic tool materials were fabricated via hot pressing technique by adding Si3N4 and TiC nanoparticles and with Al2O3 and Y2O3 as additives. Tool wear in dry machining of nodular cast iron with Si3N4/TiC micro-nano-composite ceramic tool were investigated, in comparison with a commercial Sialon ceramic tool. For determination of the wear resistance, the workpiece which is prepared to be used in the experiment, 400 mm in length and 120 mm in diameter, is machined in lathe. Turning experiments were carried out at three different cutting speeds, which were 110, 175, and 220 m/min respectively. Feed rate (f) and depth of cut (ap) were kept fixed at 0.1mm/rev and 0.5mm. The results show that the two types of cutting tools have similar cutting tool wear behavior, while the Si3N4/TiC micro-nano-composite tool exhibits a better wear resistance than that of the Sialon tool. The wear of Si3N4/TiC micro-nano-composite ceramic cutting tool is mainly dominated by the abrasion, while the wear of Sialon ceramic cutting tool is dominated by the abrasive action, microcracking and pullout of grains.


2018 ◽  
Vol 920 ◽  
pp. 120-125
Author(s):  
Liang Dong ◽  
Cong Li ◽  
Shu Hui Li

In this research, the cutting process of a martensitic Ultra-High Strength Steel (UHSS) beam is investigated by using finite element method. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the ductile fracture during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Based on the simulation, the local load situation of wear serious areas of the cutting tool is studied and the wear reason is explained. Optimizing design scheme for the tool profile is proposed to improve the tool wear. The optimized cutting tool is adopted in the actual industrial production and the wear life cycle is improved up to 14000 times cutting frequency compared with 4000 times cutting frequency for the original tool. The practice results demonstrate that the optimizing design scheme for the tool profile is very successfully.


2013 ◽  
Vol 291-294 ◽  
pp. 2645-2649
Author(s):  
Zhen Li ◽  
Tao Jiang ◽  
Xiang Wang ◽  
Li Li

According to the properties request of energy storage flywheels running in high speed, chemical composition of a new ultra-high-strength steel has been designed. The designed steel specimen was prepared using intermediate frequency induction furnace and its transformation point, which had been simulated and calculated through J-Mat software in advance together with cooling curves, was investigated using by thermal dilatometer. Then the microstructure and mechanical properties of the designed steel have been evaluated by means of OM, SEM, durometer and universal material tensile tester. Simulation results showed that the pearlitic transformation of designed steel occurred at 687-453°C and bainite transformation at 453-340°C. Martensitic transformation started at 340°C and terminated at 220°C. The experimental results indicated that the casting microstructure of the designed steel was a duplex structure consisting of martensite and acicular bainite with a small amount of retained austenite. The austenization temperature ranged from 698°C to 790°C. The superior comprehensive mechanical properties of tensile strength of 1900MPa and elongation of 6.65% as well as the microstructure of tempered martensite was obtained after heat treatment.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Crucible D6 is a low alloy ultra-high strength steel developed for aircraft-missile applications and primarily designed for use in the 260,000-290,000 psi tensile strength range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-129. Producer or source: Crucible Steel Company of America.


Sign in / Sign up

Export Citation Format

Share Document