Numerical and experimental investigations on large-diameter gear rolling with local induction heating process

Author(s):  
Xiaobin Fu ◽  
Baoyu Wang ◽  
Xiaoxing Zhu ◽  
Xuefeng Tang ◽  
Hongchao Ji
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiurong Fang ◽  
Jia Lu ◽  
Junfeng Wang ◽  
Jinhui Yang

The parameters of induction heating of large-diameter pipes have a direct effect on the final processing quality of the elbow, and the complexity of multifield coupling of magnetothermal force in induction heating can make it impossible to quantitatively optimize the design parameters of the induction heating device. In this paper, X80 pipeline steel induction heating is taken as the research object, and a corresponding numerical model is established. The influence of induction heating process parameters on the heating temperature of pipeline steel under the skin effect is determined. First, the influence of process parameters on the heating effect of pipeline steel is quantified by orthogonal test. Then, taking the optimum temperature difference between the inner and outer wall of X80 pipeline steel during the induction heating process as a target, the optimal process parameter set of the pipe induction heating is determined by using neural network genetic algorithm. Finally, comparing the relevant test criteria of the regression equation, the optimum mathematical prediction model of the outer wall temperature of the pipe induction heating process is obtained, which provides a theoretical basis for optimization of the process parameters of the pipe-based induction heating device.


2018 ◽  
Vol 245 ◽  
pp. 04002
Author(s):  
Iurii Murashov ◽  
Vyacheslav Shestakov ◽  
Vladimir Skornyakov ◽  
Irina Savelieva

The article is dedicated to nonstationary simulation of induction heating technology for the production of seamless large diameter tees. A mathematical model of induction heating process representing a multi-physical (heat transfer and electromagnetism) task for technology of tees production is developed. Numerical simulation was carried out for a flat spiral inductor. The developed model was verified according to the results of experimental studies. The hydrodynamic 3D mathematical model is developed for the design of the inductor cooling system. Optimal operating modes are determined by simulation results and confirmed by experimental data. The calculation results are presented for pipes with wall thicknesses: 15 mm, 40 mm, 60 mm, 70 mm.


2018 ◽  
Vol 18 (3) ◽  
pp. 408-419
Author(s):  
A J shokri ◽  
M H Tavakoli ◽  
A Sabouri Dodaran ◽  
M S Akhondi Khezrabad ◽  
◽  
...  

Author(s):  
Max Bialaschik ◽  
Volker Schöppner ◽  
Mirko Albrecht ◽  
Michael Gehde

AbstractThe joining of plastics is required because component geometries are severely restricted in conventional manufacturing processes such as injection molding or extrusion. In addition to established processes such as hot plate welding, infrared welding, or vibration welding, hot gas butt welding is becoming more and more important industrially due to its advantages. The main benefits are the contactless heating process, the suitability for glass fiber reinforced, and high-temperature plastics as well as complex component geometries. However, various degradation phenomena can occur during the heating process used for economic reasons, due to the presence of oxygen in the air and to the high gas temperatures. In addition, the current patent situation suggests that welding with an oxidizing gas is not permissible depending on the material. On the other hand, however, there is experience from extrusion welding, with which long-term resistant weld seams can be produced using air. Investigations have shown that the same weld seam properties can be achieved with polypropylene using either air or nitrogen as the process gas. Experimental investigations have now been carried out on the suitability of different gases with regard to the weld seam quality when welding polyamides, which are generally regarded as more prone to oxidation. The results show that weld strengths are higher when nitrogen is used as process gas. However, equal weld strengths can be achieved with air and nitrogen when the material contains heat stabilizers.


2021 ◽  
Vol 1047 (1) ◽  
pp. 012027
Author(s):  
A V Milov ◽  
V S Tynchenko ◽  
S O Kurashkin ◽  
V E Petrenko ◽  
D V Rogova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document