Analysis of the machine tool dynamic characteristics in manufacturing space based on the generalized dynamic response model

2017 ◽  
Vol 92 (1-4) ◽  
pp. 1411-1424 ◽  
Author(s):  
Congying Deng ◽  
Yun Liu ◽  
Jie Zhao ◽  
Bo Wei ◽  
Guofu Yin
1968 ◽  
Vol 183 (1) ◽  
pp. 683-694 ◽  
Author(s):  
A. J. Healey ◽  
J. D. Stringer

Experimental and analytical studies are made of an oil hydraulic system which uses a pressure compensated flow control valve for speed regulation. The study concerns dynamic response with special reference to the effects on the system of the sudden application of a retarding force to the mass it is moving. Equations of a typical ‘meter-out’ type of system are first developed and solved. The consequent predictions are then compared with experimental results from an apparatus which simulated a machine tool application. The advantages of incorporating a restrictor in the inlet (supply) line are then examined both experimentally and analytically using an analogue computer. The results show that the mathematical models give satisfactory predictions of the maximum changes of velocity and pressure occurring during the transients. The restrictor reduced the magnitudes of these transient changes and also eliminated ‘stick-slip’ oscillations at low speed. It is concluded that the methods of analysis outlined in this paper could be used to advantage in the design of practical systems.


2014 ◽  
Vol 538 ◽  
pp. 91-94
Author(s):  
Wei Ping Luo

A virtual prototype model of Machine Tool has been constructed by using the Pro/E software and the ANSYS software. Considering the effects of contact surfaces, dynamic analyses of Machine Tool are studied. The effects of contact surfaces on the dynamic characteristics of machine tool are studied. So that the purpose predicting and evaluating synthetically the machine tool dynamic performance without a physical sample can be achieved.


2011 ◽  
Vol 418-420 ◽  
pp. 2055-2059 ◽  
Author(s):  
Yu Lin Wang ◽  
Na Jin ◽  
Kai Liao ◽  
Rui Jin Guo ◽  
Hu Tian Feng

The head frame is a key component which plays a supportive and accommodative role in the spindle system of CNC machine tool. Improving the static and dynamic characteristics has profound significance to the development of machine tool and product performance. The simplified finite element modal is established with ANSYS to carry out the static and modal analysis. The results showed that the maximum deformation of the head frame was 0.0066mm, the maximum stress was 3.94Mpa, the deformation of most region was no more than 0.0007mm, which all verified that the head frame had a good stiffness and deforming resistance; several improvement measures for dynamic performance were also proposed by analyzing the mode shapes, and the 1st order natural frequency increased 7.33% while the head frame mass only increased 1.58% applying the optimal measure, which improved the dynamic characteristics of the head frame effectively.


Author(s):  
PS Suresh ◽  
Niranjan K Sura ◽  
K Shankar

The dynamic responses simulation of aircraft as rigid body considering heave, pitch, and roll motions, coupled onto a tricycle landing gear arrangement is presented. Equation of motion for each landing gear consists of un-sprung mass vertical and longitudinal motions considering strut nonlinear stiffness and damping combined with strut bending flexibility. Initially, the nonlinear dynamic response model is subjected to an input of riding over staggered bump and the responses are compared with linear landing gear model. It is observed that aircraft dynamics and important landing gear events such as vertical, spin-up and spring-back are truly represented with nonlinear stiffness and damping model considering strut bending flexibility. Later, landing response analysis is performed, with the input from nonlinear flight mechanics model for several vertical descent rate cases. The aircraft and landing gear dynamic responses such as displacement, velocity, acceleration, and reaction forces are obtained. The vertical and longitudinal drag forces from the nonlinear dynamic response model is compared with “Book-case method” outlined in landing gear design technical specifications. From the reaction force ratio calculation, it is shown that for lower vertical descent rate case the predicted loads are lesser using nonlinear dynamic response model. The same model for higher vertical descent rate cases predicts higher ratios on vertical reaction for main landing gear and longitudinal reaction for nose landing gear, respectively. The scope for increase in fatigue life for low vertical descent rate landing covering major design spectrum and the concern for static strength and structural integrity consideration for higher vertical descent rate cases are discussed in the context of event monitoring on aircraft in services.


2012 ◽  
Vol 256-259 ◽  
pp. 2028-2033
Author(s):  
Jing Yang ◽  
Jiang Fan ◽  
Ji Xing Yuan ◽  
Qing Zhang

In this paper a skyscrapers frame-core wall structure as an example in Kun Ming, using two independent software, SATWE and ETABS, analyzed the dynamic characteristics and dynamic response of structures with earthquake in linear elastic phase and the elastic-plastic phase respectively, so that could evaluate rationality of the design of the structure as a whole and seismic performance superior or not, and it could provide an idea for audit drawing or proofread their own.


2016 ◽  
Vol 693 ◽  
pp. 471-478
Author(s):  
Rui Tao Peng ◽  
Wang Yan ◽  
Xin Zi Tang ◽  
Zhuan Zhou

The dynamic characteristic is one of the important indicators which determine the performance of a machine tool, in this paper, the finite element model of a plane grinder is established with consideration of the behavior of joint, the static dynamic characteristics of machine tools are analyzed to reveal the vibration weak link, the column structure is topology optimized and redesigned based on the variable density degradation method. Static and dynamic characteristics of the original and new column are compared, and the dynamic characteristics of the machine tool before and after modification are discussed. The results indicate that the static and dynamic characteristics of the plane grinder are all improved after optimization.


Author(s):  
J. H. Lee ◽  
S. H. Yang ◽  
Y. S. Kim

Miniaturization for manufacturing system has been studied widely since the development of the smallest lathe in the world. Several prototypes are implemented, which are used to produce small parts with high precision. Accuracy and stiffness are the most important factors for design in the development of miniaturized systems. This study presents a method to evaluate static and dynamic characteristics of a miniaturized machine tool (mMT) according to its configuration before building the actual system. The proposed error estimation technique shows that volumetric error can be estimated indirectly at the design stage using error components of one axis and HTM (Homogeneous Transform Matrix), unlike the error modeling technique through direct measurement. Thus, accuracy of the system based on its configuration is analyzed at the design stage itself. The proposed analysis procedure is shown for the case of a 3 axis machine tool. In addition, dynamic characteristics of spindle unit affecting the spindle error are studied.


2010 ◽  
Vol 29-32 ◽  
pp. 2037-2041
Author(s):  
Ke Wang ◽  
Guang Lv ◽  
Xing Wei Sun

The dynamic characteristics of machine tool is an important factor, which make affect on the cutting stability of machine tool. The poor dynamic characteristics will seriously affect the stability of cutting, make the low cutting efficiency and low machining precision, and also accelerate the wear of tools and even reduce the machine’s service life. So it is necessary to analyze the dynamic characteristics of machine tool, and according to the results of analysis to optimize structural parameters and motion parameters of the machine tools. This paper analyses the dynamic characteristics of machine bed and machined work piece of the CNC special machine tool for Kelly with the finite element software, and analysis of excitation characteristics of cutting tool. It also makes optimization design to the machine bed, through the analysis and optimization, the natural frequency and stiffness will be obviously improved. According to the structure and calculation of the motion parameters we can get the exciting force frequency to workpiece when it is cut, using interlocking tooth cutting method to replace the initial symmetrical cutting method in order to avoid the resonance produced in the cutting process and improve stability. The exciting frequency when cutting can be improved and the probability of resonance when cutting is lowered. All these ensure high efficiency and high stability cutting.


Sign in / Sign up

Export Citation Format

Share Document