Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance

2018 ◽  
Vol 96 (9-12) ◽  
pp. 3917-3932 ◽  
Author(s):  
Anup Malik ◽  
Alakesh Manna
2011 ◽  
Vol 204-210 ◽  
pp. 1830-1834
Author(s):  
Zhao Long Li ◽  
Shi Chun Di

The method of machining deep hole on Ni-base alloy which can tolerant high temperature by pulse electrochemical machining has been proposed in this paper. Five technical parameters are discussed on the effect of mass removal rate of machining process. Establish a dynamic math model, and analyze the effect of process parameters on the mass material removal rate of deep small holes. Machining accuracy of deep small holes was analyzed.


Author(s):  
Divya Zindani ◽  
Nadeem Faisal ◽  
Kaushik Kumar

Electrochemical machining (ECM) is a non-conventional machining process that is used for machining of hard-to-machine materials. The ECM process is widely used for the machining of metal matrix composites. However, it is very essential to select optimum values of input process parameters to maximize the machining performance. However, the optimization of the output process parameters and hence the machining performance is a difficult task. In this chapter an attempt has been made to carry out single and multiple optimization of the material removal rate (MRR) and the surface roughness (SR) for the ECM process of EN19 using the particle swarm optimization (PSO) technique. The input parameter considered for the optimization are electrolyte concentration (%), voltage (V), feed rate (mm/min), and inter-electrode gap (mm). The optimum value of MRR and SR as found using the PSO algorithm are 0.1847 cm3/min and 25.0612, respectively.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 948
Author(s):  
Ming Wu ◽  
Krishna Kumar Saxena ◽  
Zhongning Guo ◽  
Jun Qian ◽  
Dominiek Reynaerts

This paper presents fabrication of complex surficial micro-features employing a cross-innovative hybrid process inspired from lithography and Jet-ECM. The process is referred here as mask electrolyte jet machining (MEJM). MEJM is a non-contact machining process which combines high resolution of lithography and greater flexibility of Jet-ECM. It is a non-contact process which can fabricate variety of microstructures on difficult-to-machine materials without need of expensive tooling. The presented work demonstrates the process performance of this technology by statistical analysis and multivariate kernel density estimation (KDE) based on probabilistic density function. Micro-letters are fabricated as an example of complex surficial structure comprising of multiple intersecting, straight and curved grooves. The processing response is characterized in terms of geometrical size, similarity ratio, and cumulative shape deviation. Experimental results demonstrated that micro letters with good repeatability (minimum SD of shape error ratio 0.297%) and shape accuracy (minimum shape error of 0.039%) can be fabricated with this technology. The results suggest MEJM could be a promising technology for batch manufacturing of surface microstructures with high productivity.


Author(s):  
Ali Mehrvar ◽  
Ali Basti ◽  
Ali Jamali

Selection of optimal and suitable process parameters is a crucial issue in manufacturing processes especially in electrochemical machining (ECM). Since the utmost target is to find suitable machining parameters for gaining desired machining performances, a new hybrid approach has been applied for inverse modelling of ECM process. Four machining inputs, i.e. voltage, tool feed rate, electrolyte flowrate and concentration; and two machining responses, i.e. surface roughness (Ra) and material removal rate (MRR) are presented as input variables and responses, respectively. In the proposed approach, firstly, comprehensive mathematical equations have been established based on response surface methodology (RSM). The two machining performances are modeled in this step with machining parameters. Then, the differential evolution (DE) algorithm has been used for Pareto-based multi-objective optimization. Finally, group method of data handling (GMDH)-type neural networks is used through the Pareto table for inverse modelling. As a result, four models have been developed for each of the four machining parameters; therefore, each machining parameters is determined according to the machining performance as two new design variables. The results demonstrated that the suggested method is a helpful and promising tool for inverse modelling and determining such important relationships between optimized responses and input variables.


Author(s):  
Ali Mehrvar ◽  
Ali Basti ◽  
Ali Jamali

Electrochemical machining is a unique prevalent nonconventional manufacturing process used in different industries involving various process parameters, which greatly influence machining performance. Therefore, selection of proper and optimal parameters setting is a challenging issue. In this paper, differential evolution algorithm is applied to look for the optimum solution to this problem. Four parameters, i.e. voltage, tool feed rate, electrolyte flow rate, and electrolyte concentration; and two machining criteria, i.e. material removal rate and surface roughness (Ra) are considered as input variables and responses, respectively. The main purpose is to maximize material removal rate and minimize Ra to achieve better machining performance. In this way, comprehensive mathematical models have first been developed using response surface methodology through experimentation based on central composite design plan. Then, differential evolution algorithm has been utilized for optimizing the process parameters; both single- and multiobjective optimizations are considered, and optimal Pareto front is determined. Finally, optimization result of a trade-off design point in the Pareto front of Ra and material removal rate was also verified experimentally. This machined surface was examined with field-emission scanning electron microscope images. The results showed that the proposed approach is an effective and suitable strategy for optimization of the electrochemical machining process.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 404 ◽  
Author(s):  
Xinmin Zhang ◽  
Xudong Song ◽  
Pingmei Ming ◽  
Xinchao Li ◽  
Yongbin Zeng ◽  
...  

Jet electrochemical machining (Jet-ECM) is a significant prospective electrochemical machining process for the fabrication of micro-sized features. Traditionally and normally, the Jet-ECM process is carried out with its electrolytic jet being vertically impinged downstream against the workpiece. Therefore, other jet orientations, including a vertically upstream orientation and a horizontal orientation, have rarely been adopted. In this study, three jet orientations were applied to electrolytic jet machining, and the effect of jet orientations on machining characteristics was systemically investigated. Horizontal jet orientation is of great benefit in achieving accurate micro-sized features with excellent surface quality with either a static jet or a scanning jet for the Jet-ECM. On the other hand, the Jet-ECM with a horizontal jet orientation has a smaller material removal rate (MMR) than the ones with vertical jet orientations, which have almost the same MMR. It was found that an enhancement of machining localization and a reduction of MMR for horizontal jet electrochemical machining primarily results from an improvement of the mass-transfer field. The horizontal orientation of the jet is beneficial for the Jet-ECM processes to improve machining accuracy.


2011 ◽  
Vol 189-193 ◽  
pp. 3750-3754 ◽  
Author(s):  
Gen Fu Yuan ◽  
Wei Zheng ◽  
Xue Hui Chen ◽  
Yu Ping Ma

Laser combined machining is a complex machining method which utilizes the combined effect of various forms of energy to achieve a material processing. High manufacturing quality and surface accuracy, and machining efficiency can be achieved. The research progress in the area of laser combined other machine processes is reviewed. Several methods of laser combined machining are introduced and their characteristics and applications from the point of the laser assisted liquid machining are investigated. For example, laser assisted wet etching and laser assisted jet electrochemical machining, and waterjet-guided laser machining are reported. The experimental and theoretical studies of the technologies to improve the machining performance are discussed. Finally, the existing problems and the future research directions of the laser compound processing are put forward .


1996 ◽  
Vol 118 (4) ◽  
pp. 490-498 ◽  
Author(s):  
J. Kozak ◽  
K. P. Rajurkar ◽  
R. Balkrishna

Jet Electrochemical Machining (ECJM) employs a jet of electrolyte for anodic dissolution of workpiece material. ECJM is extensively used for drilling small cooling holes in aircraft turbine blades and for producing maskless patterns for microelectronics parts. ECJM process drills small diameter holes and complex shape holes without the use of a profile electrode. One of the most significant problems facing ECJM user industries is the precise control of the process. A theoretical analysis of the process and a corresponding model are required for the development of an appropriate control system. This paper presents a mathematical model for determining the relationship between the machining rate and working conditions (electrolyte jet flow velocity, jet length, electrolyte properties, and voltage) of ECJM. This model describes a distribution of electric field and the effect of change of conductivity of electrolyte (caused by heating) on the process performance. A maximum dissolution rate is determined from the allowable increase of electrolyte temperature. Experimental verification of theoretical results is also presented.


2007 ◽  
Vol 40 (18) ◽  
pp. 475-480
Author(s):  
Laurentiu SLATINEANU ◽  
Oana DODUN ◽  
Loredana SANTO ◽  
Margareta COTEATA ◽  
Adriana MUNTEANU

Sign in / Sign up

Export Citation Format

Share Document