Deformation characteristics of aramid fiber–reinforced pneumatic wheel and machining analysis

2020 ◽  
Vol 110 (1-2) ◽  
pp. 581-591 ◽  
Author(s):  
Xi Zeng ◽  
Yu An ◽  
Zhuo Li ◽  
Ren-quan Ji ◽  
Zhuo-hang Gao ◽  
...  
2021 ◽  
pp. 095400832110089
Author(s):  
Ting Li ◽  
Zengxiao Wang ◽  
Hao Zhang ◽  
Yutong Cao ◽  
Zuming Hu ◽  
...  

The poor interfacial adhesion of aramid fiber and matrix limits the application of the final composites. In this study, a series of the sulfone-functionalized poly( p-phenylene terephthalamide) (SPPTA) copolymers were satisfactorily synthesized and the effects of polymerization conditions (contents of the additional monomer and the cosolvent LiCl, molar concentration and ratio of the monomer, reaction temperature and time) on the molecular weight of the copolymer were discussed. The introduction of the sulfone group in aromatic polyamides not only increased the polarity of poly( p-phenylene terephthalamide) (PPTA) but destroyed the regular arrangement of the molecular chains, which greatly improved the surface free energy and the solubility of the polymers in organic solvents. The polymer maintained excellent thermal and interfacial properties. Compared with the PPTA fiber/epoxy composites, the interfacial shear strength (IFSS) of SPPTA fiber-reinforced epoxy composites reached 43.5 MPa, with a significantly enhancement of 20.8%, implying that the study provided an effective method to achieve highly interfacial adhesion of aramid fiber-reinforced composites.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Daiki Sunaga ◽  
Takumi Koba ◽  
Toshiyuki Kanakubo

Tensile performance of fiber-reinforced cementitious composite (FRCC) after first cracking is characterized by fiber-bridging stress–crack width relationships called bridging law. The bridging law can be calculated by an integral calculus of forces carried by individual fibers, considering the fiber orientation. The objective of this study was to propose a simplified model of bridging law for bundled aramid fiber, considering fiber orientation for the practical use. By using the pullout characteristic of bundled aramid fiber obtained in the previous study, the bridging laws were calculated for various cases of fiber orientation. The calculated results were expressed by a bilinear model, and each characteristic point is expressed by the function of fiber-orientation intensity. After that, uniaxial tension tests of steel reinforced aramid-FRCC prism specimens were conducted to obtain the crack-opening behavior and confirm the adaptability of the modeled bridging laws in crack-width evaluation. The experimental parameters are cross-sectional dimensions of specimens and volume fraction of fiber. The test results are compared with the theoretical curves calculated by using the modeled bridging law and show good agreements in each parameter.


2021 ◽  
Vol 258 ◽  
pp. 113398
Author(s):  
Zhen Wang ◽  
Haitao Li ◽  
Benhua Fei ◽  
Mahmud Ashraf ◽  
Zhenhua Xiong ◽  
...  

2021 ◽  
Author(s):  
Mehmet Emin Çetin ◽  
Yusuf Baştosun ◽  
Ahmet Caner Tatar ◽  
M. Huseyin CETIN ◽  
Okan Demir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document