Analysis of asymmetrical rolling of strip considering percentages of three regions in deformation zone

2020 ◽  
Vol 110 (3-4) ◽  
pp. 763-775
Author(s):  
Xiangkun Sun ◽  
Xianghua Liu ◽  
Ji Wang ◽  
Junlong Qi
2021 ◽  
Author(s):  
Ji Wang ◽  
Xianghua Liu

Abstract A new model for the asymmetrical rolling is proposed to calculate the minimum rollable thickness simply and fast by the slab method. The calculation formulas of the rolling pressure, the rolling force, the critical roll speed ratio and the critical front tension under different deformation zone configurations are proposed, and the deformation zone configuration - rolling parameters relationship diagram is given and analyzed. The results show that the minimum rollable thickness can be reached when the rolling parameters keep the deformation zone configuration as cross-shear zone + backward-slip zone (C+B) or all cross-shear zone (AC). The calculation formulas of the minimum rollable thickness and the required rolling parameters for different deformation zone configurations are proposed respectively. The calculated value is in good agreement with the experimental results.


Author(s):  
S. R. Rakhmanov

In some cases, the processes of piercing or expanding pipe blanks involve the use of high-frequency active vibrations. However, due to insufficient knowledge, these processes are not widely used in the practice of seamless pipes production. In particular, the problems of increasing the efficiency of the processes of piercing or expanding a pipe blank at a piercing press using high-frequency vibrations are being solved without proper research and, as a rule, by experiments. The elaboration of modern technological processes for the production of seamless pipes using high-frequency vibrations is directly related to the choice of rational modes of metal deformation and the prediction resistance indicators of technological tools and the reliability of equipment operation. The creation of a mathematical model of the process of vibrating piercing (expansion) of an axisymmetric pipe blank at a piercing press of a pipe press facility is an actual task. A calculation scheme for the process of piercing a pipe plank has been elaborated. A dependence was obtained characterizing the speed of front of plastic deformation propagation on the speed of penetration of a vibrated axisymmetric mandrel into the pipe workpiece being pierced. The dynamic characteristics of the occurrence of wave phenomena in the metal being pierced under the influence of a vibrated tool have been determined, which significantly complements the previously known ideas about the stress-strain state of the metal in the deformation zone. The deformation fields in the zones of the disturbed region of the deformation zone were established, taking into account the high-frequency vibrations of the technological tool. It has been established that the choice of rational parameters (amplitude-frequency characteristics) of the vibration piercing process of a pipe blank results in significant increase in the efficiency of the process, the durability of the technological tool and the quality of the pierced blanks.


2009 ◽  
Vol 2 (S1) ◽  
pp. 891-894 ◽  
Author(s):  
Fábio J. P. Simões ◽  
Ricardo J. Alves de Sousa ◽  
José J. A. Grácio ◽  
Frédéric Barlat ◽  
Jeong Whan Yoon

2011 ◽  
Vol 311-313 ◽  
pp. 953-956
Author(s):  
Hao Chen ◽  
Gang Tao

In order to study dynamic response of metal, this paper makes use of theoretical formula to investigate changes of temperature and grain size on steel target after the penetration of copper jet based on data gathered from the experiments. Deformed target penetrated by copper jet could be divided into superplastic deformation zone and normal deformation zone according to the different microstructure. Temperature distribution of each deformation zones is in turn calculated by two constitutive equations. The results indicate that areas with high temperature concentrate on the narrow zone near the penetrated channel. Then, the calculation of grain size conforms to the observation. It is obviously proven that the method used in this paper is trustworthy for calculating the changes of temperature and grain size of target caused by penetration.


2006 ◽  
Vol 116-117 ◽  
pp. 417-420 ◽  
Author(s):  
Moo Young Huh ◽  
Hyung Gu Kang ◽  
C.K. Kang

Asymmetrical rolling was performed by rolling AA 1050 sheets with different velocities of upper and lower rolls. In order to study the effect of roll gap geometry on the evolution of strain states and textures during asymmetrical rolling, the reduction per rolling pass was varied. After asymmetrical rolling, the outer thickness layers depicted shear textures and the center thickness layers displayed a random texture. With decreasing reduction per an asymmetrical rolling pass, the thickness layers depicting shear textures increases. The strain states associated with asymmetrical rolling were investigated by simulations with the finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document