Modeling of textile manufacturing processes using intelligent techniques: a review

Author(s):  
Zhenglei He ◽  
Jie Xu ◽  
Kim Phuc Tran ◽  
Sébastien Thomassey ◽  
Xianyi Zeng ◽  
...  
2021 ◽  
Vol 11 (21) ◽  
pp. 9945
Author(s):  
Ray-I Chang ◽  
Chia-Yun Lee ◽  
Yu-Hsin Hung

Industry 4.0 has remarkably transformed many industries. Supervisory control and data acquisition (SCADA) architecture is important to enable an intelligent and connected manufacturing factory. SCADA is extensively used in many Internet of Things (IoT) applications, including data analytics and data visualization. Product quality management is important across most manufacturing industries. In this study, we extensively used SCADA to develop a cloud-based analytics module for production quality predictive maintenance (PdM) in Industry 4.0, thus targeting textile manufacturing processes. The proposed module incorporates a complete knowledge discovery in database process. Machine learning algorithms were employed to analyze preprocessed data and provide predictive suggestions for production quality management. Equipment data were analyzed using the proposed system with an average mean-squared error of ~0.0005. The trained module was implemented as an application programming interface for use in IoT applications and third-party systems. This study provides a basis for improving production quality by predicting optimized equipment settings in manufacturing processes in the textile industry.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (08) ◽  
pp. 437-443
Author(s):  
Lebo Xu ◽  
Jeremy Meyers ◽  
Peter Hart

Coffee edge-wicking testing was conducted on two groups of highly-sized paperboard manufactured at two mills with similar manufacturing processes, but with vastly different local fiber sources. Although the Hercules size test (HST) indicated similar internal size levels between the two types of board, the edge-wicking behavior was noticeably different. Analysis of fiber structure revealed that the board with more edge-wicking had fibers with thicker fiber walls, which kept the fiber lumen more open after pressing and drying on a paper machine. It was demonstrated that liquid penetration through voids between fibers in highly-sized paperboard was limited, because the fiber surface was well protected by the presence of sufficient sizing agent. Nevertheless, freshly exposed fiber walls and lumens at the cut edge of the sheet were not protected by sizing material, which facilitated edge-wicking. The correlation between fiber structure and edge-wicking behavior was highlighted in this work to inspire development of novel sizing strategies that protect the freshly cut edge of the sheet from edge-wicking.


Author(s):  
Pei Y. Tsai ◽  
Junedong Lee ◽  
Paul Ronsheim ◽  
Lindsay Burns ◽  
Richard Murphy ◽  
...  

Abstract A stringent sampling plan is developed to monitor and improve the quality of 300mm SOI (silicon on insulator) starting wafers procured from the suppliers. The ultimate goal is to obtain the defect free wafers for device fabrication and increase yield and circuit performance of the semiconductor integrated circuits. This paper presents various characterization techniques for QC monitor and examples of the typical defects attributed to wafer manufacturing processes.


Author(s):  
Camelia Hora ◽  
Stefan Eichenberger

Abstract Due to the development of smaller and denser manufacturing processes most of the hardware localization techniques cannot keep up satisfactorily with the technology trend. There is an increased need in precise and accurate software based diagnosis tools to help identify the fault location. This paper describes the software based fault diagnosis method used within Philips, focusing on the features developed to increase its accuracy.


Sign in / Sign up

Export Citation Format

Share Document