Numerical simulation for electron beam selective melting PBF additive manufacturing of molybdenum

Author(s):  
Muhammad Qasim Zafar ◽  
Chaochao Wu ◽  
Haiyan Zhao ◽  
Du Kai ◽  
Qianming Gong
2019 ◽  
Vol 25 (6) ◽  
pp. 989-997
Author(s):  
Yajun Yin ◽  
Wei Duan ◽  
Kai Wu ◽  
Yangdong Li ◽  
Jianxin Zhou ◽  
...  

Purpose The purpose of this study is to simulate the temperature distribution during an electron beam freeform fabrication (EBF3) process based on a fully threaded tree (FTT) technique in various scales and to analyze the temperature variation with time in different regions of the part. Design/methodology/approach This study presented a revised model for the temperature simulation in the EBF3 process. The FTT technique was then adopted as an adaptive grid strategy in the simulation. Based on the simulation results, an analysis regarding the temperature distribution of a circular deposit and substrate was performed. Findings The FTT technique was successfully adopted in the simulation of the temperature field during the EBF3 process. The temperature bands and oscillating temperature curves appeared in the deposit and substrate. Originality/value The FTT technique was introduced into the numerical simulation of an additive manufacturing process. The efficiency of the process was improved, and the FTT technique was convenient for the 3D simulations and multi-pass deposits.


Author(s):  
Dmitriy Nikolayevich Trushnikov ◽  
Elena Georgieva Koleva ◽  
Roman Pozolovich Davlyatshin ◽  
Roman Mikhailovich Gerasimov ◽  
Yuriy Vitalievich Bayandin

Abstract Background The actual problem for calculating a shape of free surface of the melt when analyzing the processes of wire-based electron-beam surfacing on the substrate, being introduced into additive manufacturing, is the development of adequate mathematical models of heat and mass transfer. The paper proposed a formulation of the problem of melt motion in the framework of the Lagrangian description. The mathematical statement includes the balance equations for mass, momentum and energy, and physical equations for describing heat and mass transfer. Methods The smoothed particle hydrodynamics method was used for numerical simulation of the process of wire-based electron-beam surfacing on the substrate made from same materials (titanium or steel). A finite-difference analog of the equations is given and the algorithm for solving the problem is implemented. To integrate the discretized equations Verlet method was utilized. Algorithms are implemented in the open software package LAMMPS. Results The numerical simulation results allow the estimation of non-stationary volume temperature distributions, melt flow velocities and pressures, and characteristics of process. Conclusion The possibility of applying the developed mathematical model to describe additive production is shown. The comparison of numerical calculations with experimental studies showed good agreement.


Vestnik MEI ◽  
2017 ◽  
pp. 8-14 ◽  
Author(s):  
Aleksandr V. Gudenko ◽  
◽  
Viktor К. Dragunov ◽  
Andrey Р. Sliva ◽  
◽  
...  

Author(s):  
F. Pixner ◽  
R. Buzolin ◽  
S. Schönfelder ◽  
D. Theuermann ◽  
F. Warchomicka ◽  
...  

AbstractThe complex thermal cycles and temperature distributions observed in additive manufacturing (AM) are of particular interest as these define the microstructure and the associated properties of the part being built. Due to the intrinsic, layer-by-layer material stacking performed, contact methods to measure temperature are not suitable, and contactless methods need to be considered. Contactless infrared irradiation techniques were applied by carrying out thermal imaging and point measurement methods using pyrometers to determine the spatial and temporal temperature distribution in wire-based electron beam AM. Due to the vacuum, additional challenges such as element evaporation must be overcome and additional shielding measures were taken to avoid interference with the contactless techniques. The emissivities were calibrated by thermocouple readings and geometric boundary conditions. Thermal cycles and temperature profiles were recorded during deposition; the temperature gradients are described and the associated temperature transients are derived. In the temperature range of the α+β field, the cooling rates fall within the range of 180 to 350 °C/s, and the microstructural characterisation indicates an associated expected transformation of β→α'+α with corresponding cooling rates. Fine acicular α and α’ formed and local misorientation was observed within α as a result of the temperature gradient and the formation of the α’.


2021 ◽  
pp. 101900
Author(s):  
Rafael Quelho de Macedo ◽  
Rafael Thiago Luiz Ferreira ◽  
Andrew Gleadall ◽  
Ian Ashcroft

Sign in / Sign up

Export Citation Format

Share Document