Temperature distribution simulations during electron beam freeform fabrication process based on the fully threaded tree

2019 ◽  
Vol 25 (6) ◽  
pp. 989-997
Author(s):  
Yajun Yin ◽  
Wei Duan ◽  
Kai Wu ◽  
Yangdong Li ◽  
Jianxin Zhou ◽  
...  

Purpose The purpose of this study is to simulate the temperature distribution during an electron beam freeform fabrication (EBF3) process based on a fully threaded tree (FTT) technique in various scales and to analyze the temperature variation with time in different regions of the part. Design/methodology/approach This study presented a revised model for the temperature simulation in the EBF3 process. The FTT technique was then adopted as an adaptive grid strategy in the simulation. Based on the simulation results, an analysis regarding the temperature distribution of a circular deposit and substrate was performed. Findings The FTT technique was successfully adopted in the simulation of the temperature field during the EBF3 process. The temperature bands and oscillating temperature curves appeared in the deposit and substrate. Originality/value The FTT technique was introduced into the numerical simulation of an additive manufacturing process. The efficiency of the process was improved, and the FTT technique was convenient for the 3D simulations and multi-pass deposits.

2016 ◽  
Vol 26 (8) ◽  
pp. 2340-2354 ◽  
Author(s):  
Xing Han ◽  
Haitao Zhang ◽  
Bo Shao ◽  
Dongtao Wang ◽  
Longgang Cheng ◽  
...  

Purpose The purpose of this paper is to investigate the influence of sprue distributions on the flow field and temperature field of the cladding casting process and verify the simulation results by experiments. Design/methodology/approach A steady-state mathematic model for the coupling of fluid flow, heat transfer and solidification to describe the process of cladding casting was present. The effect of sprue distributions on melt flow and temperature field was discussed. Based on the numerical simulation results, the cladding billet was prepared successfully. Moreover, the model has been verified against by temperature measurements during the cladding casting process. Findings There is a good agreement between the measured and calculated results. The homogeneity of melt flow determines the formability of cladding billets and circular temperature difference affects the bonding of the two alloys. The AA4045/AA3003 cladding billet with no defects in size of f140/f110 mm was fabricated successfully. The alloy elements diffused across the interface and formed diffusion layer with a thickness of 15 µm. The interface bonding strength is higher than the tensile strength of AA3003, indicating the metallurgical bonding between two alloys. Research limitations/implications The casting parameters are limited to the aluminum alloy cladding billet in size of f140/f110 mm in this paper. Originality/value There are few reports of cladding billet, which are used to prepare condense pipes of automotive engines. The effect of distribution schemes on the cladding casting process is rarely studied.


2019 ◽  
Vol 26 (3) ◽  
pp. 485-498 ◽  
Author(s):  
Seema Negi ◽  
Athul Arun Nambolan ◽  
Sajan Kapil ◽  
Prathamesh Shreekant Joshi ◽  
Manivannan R. ◽  
...  

Purpose Electron beam-based additive manufacturing (EBAM) is an emerging technology to produce metal parts layer-by-layer. The purpose of this paper is to systematically address the research and development carried out for this technology, up till now. Design/methodology/approach This paper identifies several aspects of research and development in EBAM. Findings Electron beam has several unique advantages such as high scanning speed, energy efficiency, versatility for several materials and better part integrity because of a vacuum working environment. Originality/value This paper provides information on different aspects of EBAM with the current status and future scope.


2014 ◽  
Vol 5 (2) ◽  
pp. 107-119 ◽  
Author(s):  
Naouar Laaidi ◽  
Sougrati Belattar

Purpose – The purpose of this paper is mainly the quantitative and the qualitative analysis of a reinforced concrete slab containing two types of delaminations: voids and honeycomb, with different sizes and depths. Design/methodology/approach – In this paper the paper adopts the infra-red thermography as a sounding method. It is used as a tool to estimate the change in temperature or thermal contrast induced by the presence of a defect in specimen besides using numerical simulation based on FEM to develop the prediction of temperature development in concrete structure. Findings – This study shows that the numerical methods can be used to evaluate and validate the experimental results. The coupling of the simulation and the experimentation can be of a great utility because it allows predicting the results before beginning the experimentation. Originality/value – The paper finds that the use of FEM in the prediction of temperature evolution in concrete, and the validation of the numerical simulation with the results obtained by the experimental measurements have a key importance in the study of civil engineering structure.


2014 ◽  
Vol 633-634 ◽  
pp. 845-849
Author(s):  
Ling Dong ◽  
Xi Chen Yang ◽  
Yun Shan Wang ◽  
Jian Bo Lei

It plays an important role in guiding laser remanufacturing process and process control to research temperature field of laser remanufacturing. A numerical simulation method of temperature field based on MATLAB PDE Tool is proposed. Theoretical model of temperature field is presented. The temperature fields at different times are calculated and simulated with finite element method and MATLAB software with PDE Toolbox. The results show that this method can accurately calculate the temperature distribution of the laser remanufacturing process. The simulation results are helpful to optimize process parameters and to improve the quality of laser remanufacturing.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


Author(s):  
RPM Guimarães ◽  
F Pixner ◽  
G Trimmel ◽  
J Hobisch ◽  
T Rath ◽  
...  

Nickel–titanium alloys are the most widely used shape memory alloys due to their outstanding shape memory effect and superelasticity. Additive manufacturing has recently emerged in the fabrication of shape memory alloy but despite substantial advances in powder-based techniques, less attention has been focused on wire-based additive manufacturing. This work reports on the preliminary results for the process-related microstructural and phase transformation changes of Ni-rich nickel–titanium alloy additively manufactured by wire-based electron beam freeform fabrication. To study the feasibility of the process, a simple 10-layer stack structure was successfully built and characterized, exhibiting columnar grains and achieving one-step reversible martensitic–austenitic transformation, thus showing the potential of this additive manufacturing technique for processing shape memory alloys.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Christina Öberg

Purpose Additive manufacturing has been described as converting supply chains into demand chains. By focusing on metal additive manufacturing as a contemporary technology causing ongoing disruption to the supply chain, the purpose of this paper is to describe and discuss how incumbent firms act during an ongoing, transformational disruption of their supply chain. Design/methodology/approach Interviews and secondary data, along with seminars attracting approximately 600 individuals operating in metal additive manufacturing, form the empirical basis for this paper. Findings The findings of this paper indicate how disruption occurs at multiple positions in the supply chain. Episodic positions as conceptualised in this paper refer to how parties challenged by disruption attempt to reach normality while speeding the transformational disruption. Originality/value This paper contributes to previous research by theorising about episodic positions in light of a supply chain disruption. The empirical data are unique in how they capture supply chain change at the time of disruption and illustrate disruptive, transformational change to supply chains. The paper interlinks research on disruption from the innovation and supply chain literature, with contributions to both.


2018 ◽  
Vol 24 (9) ◽  
pp. 1511-1523 ◽  
Author(s):  
Antreas Kantaros ◽  
Olaf Diegel

Purpose This paper aims to discuss additive manufacturing (AM) in the context of applications for musical instruments. It examines the main AM technologies used in musical instruments, goes through a history of musical applications of AM and raises the questions about the application of AM to create completely new wind instruments that would be impossible to produce with conventional manufacturing. Design/methodology/approach A literature research is presented which covers a historical application of AM to musical instruments and hypothesizes on some potential new applications. Findings AM has found extensive application to create conventional musical instruments with unique aesthetics designs. It’s true potential to create entirely new sounds, however, remains largely untapped. Research limitations/implications More research is needed to truly assess the potential of additive manufacturing to create entirely new sounds for musical instrument. Practical implications The application of AM in music could herald an entirely new class of musical instruments with unique sounds. Originality/value This study highlights musical instruments as an unusual application of AM. It highlights the potential of AM to create entirely new sounds, which could create a whole new class of musical instruments.


2019 ◽  
Vol 17 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Javad Riahi Zaniani ◽  
Shahab Taghipour Ghahfarokhi ◽  
Mehdi Jahangiri ◽  
Akbar Alidadi Shamsabadi

Purpose This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province. Design/methodology/approach Having used the ideas of Climate Consultant software, the basic designing was conducted by Design Builder Software, and the cooling and heating loads and lighting tools and equipment were calculated. Then, the amount of consuming of heating, cooling and lighting load of the building was optimized through insulation of walls and ceiling, using green roof, double glazing UPVC windows, light intensity sensor and variable refrigerant flow (VRF) system. Findings Simulation results for the stated scenarios showed an annual reduction in energy consumption of 21.1, 7.9, 26.41, 27.3 and 72.3 per cent, respectively. Also, by combining all the five scenarios, an optimal state was achieved which, from the results, brought about an annual reduction of 86.9 per cent in the energy consumption. Originality/value The authors hope that the results of the current paper could be helpful for designers and engineers in reduction of energy consumption for designing a building in similar climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document