scholarly journals The technology, economy, and environmental sustainability of isotropic superfinishing applied to electron-beam melted Ti-6Al-4V components

Author(s):  
Eleonora Atzeni ◽  
Angioletta R. Catalano ◽  
Paolo C. Priarone ◽  
Alessandro Salmi

AbstractAdditive manufacturing (AM) processes allow complex geometries to be produced with enhanced functionality, but technological challenges still have to be dealt with, in terms of surface finish and achieved tolerances. Among the consolidated powder-bed fusion processes, electron beam melting (EBM), which allows almost stress-free parts to be manufactured with a high productivity and minimum use of support structures, suffers from a poor surface quality. Thus, finishing processes have to be performed. The same geometrical complexity, which is considered one of the benefits of AM, becomes an issue when finishing is applied, in particular when internal features are present. Unconventional isotropic superfinishing processes could be a solution to this problem since they can generate a low surface roughness on complex geometries. However, the performance characteristics, with regard to the environmental sustainability and economic aspects, need to be evaluated since they are key factors that must be considered for decision-support tools when selecting a finishing process. The technological feasibility of the isotropic superfinishing (ISF) process, applied to Ti-6Al-4V parts produced by electron beam melting, is investigated in this paper by considering the dimensional and geometrical deviations induced by the finishing treatment, and from observations of the surface morphology. A significant reduction in surface roughness, Sa, to around 4 μm, has been observed on the most irregular surfaces, although the original shape is maintained. Environmental sustainability has been analyzed for all the manufacturing steps, from powder production to part fabrication, to the finishing process, and both the cumulative energy demand and material waste have been accounted for. The economic impact of the whole manufacturing chain has been evaluated, and the advantages of the ISF process are pointed out.

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 110 ◽  
Author(s):  
Camilla Tua ◽  
Laura Biganzoli ◽  
Mario Grosso ◽  
Lucia Rigamonti

The European packaging market is forecast to grow 1.9% annually in the next years, with an increasing use of returnable packages. In this context, it is important to assess the real environmental effectiveness of the packaging re-use practice in terms of environmental impacts. This life cycle assessment aims to evaluate the environmental performances of reusable plastic crates (RPCs), which are used for the distribution of 36% of fruit and vegetables in Italy. RPCs can be re-used several times after a reconditioning process, i.e., inspection, washing, and sanitization with hot water and chemicals. The analysis was performed considering 12 impact categories, as well as the cumulative energy demand indicator and a tailor-made water consumption indicator. The results show that when the RPCs are used for less than 20 deliveries, the impacts of the life cycle are dominated by the manufacturing stage. By increasing the number of deliveries, the contribution of the reconditioning process increases, reaching 30–70% of the overall impacts for 125 uses. A minimum of three deliveries of the RPCs is required in order to perform better than an alternative system where crates of the same capacity (but 60% lighter) are single-use. The same modeling approach can be used to evaluate the environmental sustainability of other types of returnable packages, in order to have a complete overview for the Italian context and other European countries.


2024 ◽  
Vol 84 ◽  
Author(s):  
F. Ali ◽  
F. Rehman ◽  
R. Hadi ◽  
G. Raza ◽  
N. Khan ◽  
...  

Abstract Life cycle assessment was carried out for a conventional wooden furniture set produced in Mardan division of the Khyber Pakhtunkhwa province of Pakistan during 2018-19. Primary data regarding inputs and outputs were collected through questionnaire surveys from 100 conventional wooden furniture set manufacturers, 50 in district Mardan and 50 in district Swabi. In the present study, cradle-to-gate life cycle assessment approach was applied for a functional unit of one conventional wooden furniture set. Production weighted average data were modelled in the environmental impacts modelling software i.e., SimaPro v.8.5. The results showed that textile used in sofa set, wood preservative for polishing and preventing insects attack and petrol used in generator had the highest contribution to all the environmental impact categories evaluated. Total cumulative energy demand for wooden furniture set manufactured was 30,005 MJ with most of the energy acquired from non-renewable fossil fuel resources.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


2020 ◽  
Vol 19 (01) ◽  
pp. 107-130 ◽  
Author(s):  
R. Borrelli ◽  
S. Franchitti ◽  
C. Pirozzi ◽  
L. Carrino ◽  
L. Nele ◽  
...  

Additive manufacturing (AM), applied to metal industry, is a family of processes that allows complex shape components to be realized from raw materials in the form of powders. Electron beam melting (EBM) is a relatively new additive manufacturing (AM) technology. Similar to electron-beam welding, EBM utilizes a high-energy electron beam as a moving heat source to melt metal powder, and 3D parts are produced in a layer-building fashion by rapid self-cooling. By EBM, it is possible to realize metallic complex shape components, e.g. fine network structures, internal cavities and channels, which are difficult to make by conventional manufacturing means. This feature is of particular interest in titanium industry in which numerous efforts are done to develop near net shape processes. In the field of mechanical engineering and, in particular, in the aerospace industry, it is crucial for quality certification purpose that components are produced through qualified and robust manufacturing processes ensuring high product repeatability. The contribution of the present work is to experimentally identify the EBM job parameters (sample orientation, location of the sample in the layer and height in the build chamber) that influence the dimensional accuracy and the surface roughness of the manufactured parts in Ti6Al4V. The repeatability of EBM is investigated too.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 252 ◽  
Author(s):  
Vincenzo Muteri ◽  
Maurizio Cellura ◽  
Domenico Curto ◽  
Vincenzo Franzitta ◽  
Sonia Longo ◽  
...  

The photovoltaic (PV) sector has undergone both major expansion and evolution over the last decades, and currently, the technologies already marketed or still in the laboratory/research phase are numerous and very different. Likewise, in order to assess the energy and environmental impacts of these devices, life cycle assessment (LCA) studies related to these systems are always increasing. The objective of this paper is to summarize and update the current literature of LCA applied to different types of grid-connected PV, as well as to critically analyze the results related to energy and environmental impacts generated during the life cycle of PV technologies, from 1st generation (traditional silicon based) up to the third generation (innovative non-silicon based). Most of the results regarded energy indices like energy payback time, cumulative energy demand, and primary energy demand, while environmental indices were variable based on different scopes and impact assessment methods. Moreover, the review work allowed to highlight and compare key parameters (PV type and system, geographical location, efficiency), methodological insights (functional unit, system boundaries, etc.), and energy/environmental hotspots of 39 LCA studies relating to different PV systems, in order to underline the importance of these aspects, and to provide information and a basis of comparison for future analyses.


Sign in / Sign up

Export Citation Format

Share Document