Surface roughness of electron beam melting Ti-6Al-4V effect on ultrasonic testing

2017 ◽  
pp. 533-549
Author(s):  
Evan Hanks ◽  
David Liu ◽  
Anthony N. Palazotto
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2020 ◽  
Vol 19 (01) ◽  
pp. 107-130 ◽  
Author(s):  
R. Borrelli ◽  
S. Franchitti ◽  
C. Pirozzi ◽  
L. Carrino ◽  
L. Nele ◽  
...  

Additive manufacturing (AM), applied to metal industry, is a family of processes that allows complex shape components to be realized from raw materials in the form of powders. Electron beam melting (EBM) is a relatively new additive manufacturing (AM) technology. Similar to electron-beam welding, EBM utilizes a high-energy electron beam as a moving heat source to melt metal powder, and 3D parts are produced in a layer-building fashion by rapid self-cooling. By EBM, it is possible to realize metallic complex shape components, e.g. fine network structures, internal cavities and channels, which are difficult to make by conventional manufacturing means. This feature is of particular interest in titanium industry in which numerous efforts are done to develop near net shape processes. In the field of mechanical engineering and, in particular, in the aerospace industry, it is crucial for quality certification purpose that components are produced through qualified and robust manufacturing processes ensuring high product repeatability. The contribution of the present work is to experimentally identify the EBM job parameters (sample orientation, location of the sample in the layer and height in the build chamber) that influence the dimensional accuracy and the surface roughness of the manufactured parts in Ti6Al4V. The repeatability of EBM is investigated too.


2016 ◽  
Vol 22 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Rebecca Klingvall Ek ◽  
Lars-Erik Rännar ◽  
Mikael Bäckstöm ◽  
Peter Carlsson

Purpose The surface roughness of products manufactured using the additive manufacturing (AM) technology of electron beam melting (EBM) has a special characteristic. Different product applications can demand rougher or finer surface structure, so the purpose of this study is to investigate the process parameters of EBM to find out how they affect surface roughness. Design/methodology/approach EBM uses metal powder to manufacture metal parts. A design of experiment plan was used to describe the effects of the process parameters on the average surface roughness of vertical surfaces. Findings The most important electron beam setting for surface roughness, according to this study, is a combination of “speed and current” in the contours. The second most important parameter is “contour offset”. The interaction between the “number of contours” and “contour offset” also appears to be important, as it shows a much higher probability of being active than any other interaction. The results show that the “line offset” is not important when using contours. Research limitations/implications This study examined “contour offset”, “number of contours”, “speed in combination with current” and “line offset”, which are process parameters controlling the electron beam. Practical implications The surface properties could have an impact on the product’s performance. A reduction in surface processing will not only save time and money but also reduce the environmental impact. Originality/value Surface properties are important for many products. New themes containing process parameters have to be developed when introducing new materials to EBM manufacturing. During this process, it is very important to understand how the electron beam affects the melt pool.


2016 ◽  
Vol 22 (3) ◽  
pp. 609-620 ◽  
Author(s):  
Dana H. Abdeen ◽  
Bruce R. Palmer

Purpose This paper aims to study the effect of processing parameters of an electron beam melting (EBM) machine on the surface roughness, critical pitting temperature and density of Ti-6Al-4V parts produced from the EBM machine. Design/methodology/approach In this study, statistically designed experiments were used to manufacture Ti-6Al-4V samples in the EBM machine under different process parameters of beam current, beam speed and offset focus. Surface roughness was measured for as-built samples using a 3D profilometer. Then, a potentiostatic test was conducted under 2.40 V vs saturated calomel electrode to determine the critical pitting temperature (CPT) in 3.5 per cent mass NaCl solution for the samples of different processing parameters. Next, density was measured for these samples. Finally, model equations were established to relate EBM’s process parameters to measured properties of surface roughness, CPT and density. Findings Results showed that offset focus had the main influence on surface roughness more than the beam current and the beam speed. Changing processing parameters did not affect corrosion behavior of EBM Ti-6Al-4V as CPT did not vary widely, although a slight effect on CPT values obtained from the beam current and the beam speed. Density was greatly affected by the offset focus more than the other parameters. It can be concluded that uniform and precise measurements of roughness and density are not achievable through this machine; only a range of these properties can be attained. Originality/value EBM machine produces 3D parts in a layer-based building process under high temperature and vacuum atmosphere. Due to the manufacturing technique and conditions, the resulting object has irregularities on the exterior surface and voids that are formed within the part, both of which affect samples’ properties like surface roughness, CPT and density. This study established model equations that can relate parts’ properties to processing parameters so that parts of specific properties are obtained to fit the application they are used for. For each property, ANOVA fits vs linear energy were also obtained.


Author(s):  
Eleonora Atzeni ◽  
Angioletta R. Catalano ◽  
Paolo C. Priarone ◽  
Alessandro Salmi

AbstractAdditive manufacturing (AM) processes allow complex geometries to be produced with enhanced functionality, but technological challenges still have to be dealt with, in terms of surface finish and achieved tolerances. Among the consolidated powder-bed fusion processes, electron beam melting (EBM), which allows almost stress-free parts to be manufactured with a high productivity and minimum use of support structures, suffers from a poor surface quality. Thus, finishing processes have to be performed. The same geometrical complexity, which is considered one of the benefits of AM, becomes an issue when finishing is applied, in particular when internal features are present. Unconventional isotropic superfinishing processes could be a solution to this problem since they can generate a low surface roughness on complex geometries. However, the performance characteristics, with regard to the environmental sustainability and economic aspects, need to be evaluated since they are key factors that must be considered for decision-support tools when selecting a finishing process. The technological feasibility of the isotropic superfinishing (ISF) process, applied to Ti-6Al-4V parts produced by electron beam melting, is investigated in this paper by considering the dimensional and geometrical deviations induced by the finishing treatment, and from observations of the surface morphology. A significant reduction in surface roughness, Sa, to around 4 μm, has been observed on the most irregular surfaces, although the original shape is maintained. Environmental sustainability has been analyzed for all the manufacturing steps, from powder production to part fabrication, to the finishing process, and both the cumulative energy demand and material waste have been accounted for. The economic impact of the whole manufacturing chain has been evaluated, and the advantages of the ISF process are pointed out.


Sign in / Sign up

Export Citation Format

Share Document