A multi-dwell temperature profile design for the cure of thick CFRP composite laminates

Author(s):  
Wenchang Zhang ◽  
Yingjie Xu ◽  
Xinyu Hui ◽  
Weihong Zhang
Author(s):  
Imed Zaghbani ◽  
Jean Francois Chatelain ◽  
Sébastien Berube ◽  
Victor Songmene ◽  
Justin Lance

2021 ◽  
Author(s):  
Wenchang Zhang ◽  
Yingjie Xu ◽  
Xinyu Hui ◽  
Weihong Zhang

Abstract This paper develops a multi-objective optimization method for the cure of thick composite laminates. The purpose is to minimize the cure time and maximum temperature overshoot in the cure process by designing the cure temperature profile. This method combines the finite element based thermo-chemical coupled cure simulation with the non-dominated sorting genetic algorithm-II (NSGA-II). In order to investigate the influence of the number of dwells on the optimization result, four-dwell and two-dwell temperature profiles are selected for the design variables. The optimization method obtains successfully the Pareto optimal front of the multi-objective problem in thick and ultra-thick laminates. The result shows that the cure time and maximum temperature overshoot are both reduced significantly. The optimization result further illustrates that the four-dwell cure profile is more e ective than the two-dwell, especially for the ultra-thick laminates. Through the optimization of the four-dwell profile, the cure time is reduced by 51.0% (thick case) and 30.3% (ultra-thick case) and the maximum temperature overshoot is reduced by 66.9% (thick case) and 73.1% (ultra-thick case) compared with the recommended cure profile. In addition, Self-organizing map (SOM) is employed to visualize the relationships between the design variables with respect to the optimization result.


2015 ◽  
Vol 1125 ◽  
pp. 121-125 ◽  
Author(s):  
Muhammad A'imullah Abdullah ◽  
Mohammad Reza Arjmandi ◽  
Seyed Saeid Rahimian Koloor ◽  
King Jye Wong ◽  
Mohd Nasir Tamin

This paper provides quantitative description of interlaminar damage process in CFRP composite laminates under cyclic shear loading. Quasi-static end-notched flexural (ENF) test on 16-ply CFRP composite laminate beam, [0]16 and its complementary validated FE model provide the reference “no-interlaminar damage” condition. Two identical ENF samples were fatigue to 50000 cycles, but at different load amplitude of 90 and 180 N, respectively (Load ratio, R = 0.1) to induce selectively property degradation at the interface crack front region. Subsequent quasi-static ENF tests establish the characteristic of the interlaminar damage degradation. The residual peak load for the fatigued ENF samples is measured at 1048 and 914 N for the load amplitude of 90 and 180 N, respectively. Cyclic interlaminar shear damage is represented by a linear degradation of the residual critical energy release rate, GIIC with the accumulated damage. Reasonably close comparisons of the predicted residual load-displacement responses with measured curves serve to verify the suitability of the assumed bilinear traction-separation law for the cyclic cohesive zone model (CCZM) used.


2001 ◽  
Vol 32 (8) ◽  
pp. 669-682 ◽  
Author(s):  
Kwang-Hee Im ◽  
Cheon-Seok Cha ◽  
Sun-Kyu Kim ◽  
In-Young Yang

2016 ◽  
Vol 878 ◽  
pp. 70-73 ◽  
Author(s):  
Kwang Hee Im ◽  
Sun Kyu Kim ◽  
David K. Hsu ◽  
Jong An Jung

Recently, terahertz ray imaging has emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques for the area applications. In this study, a new time-domain spectroscopy system was utilized for measuring the coating thickness on CFRP composite laminates. Extensive experimental measurements in reflection mode were made to map out the T-ray images. Also, the refractive index was estimated based on the electromagnetic properties. The CFRP composite laminates were observed in reflection mode and limitations will be discussed in the T-ray processing. By using these characterized material properties, the characteristics was successfully demonstrated for T-ray behavior propagating through the Shim Stock films for acquiring the refractive index. The T-ray technique has been developed for the measurement of the thickness of the Shim Stock films and the coating thickness on CFRP composites. Good results have been obtained in tests made on the thickness of the standard film samples with the coating thickness ranging from around hundreds of μm.


Author(s):  
R. Bhoominathan ◽  
P. Divyabarathi ◽  
R. Manimegalai ◽  
T. Nithya ◽  
S. Shanmugapriya

Generally, the aircraft structural parts are economically high in cost so the materials need to be inspected for defects or damages using various non-destructive testing (NDT) methods like ultrasonic, thermography and acoustic emission. The aim of this project is to characterize the defects in composite laminates before and after the flexural loading using infra-red thermography NDT method. GFRP and hybrid (GFRP+CFRP) composite laminates are fabricated with different orientation such as uni-directional, cross ply, anti-symmetric and angle ply and then tested under flexural loading according to ASTM D790 standard. The volume fraction of the fibre and matrix needs to be found out to know the void content and the mixing ratio of reinforcement and binder.


Sign in / Sign up

Export Citation Format

Share Document