scholarly journals Research progress on selective laser melting (SLM) of bulk metallic glasses (BMGs): a review

Author(s):  
Peilei Zhang ◽  
Jie Tan ◽  
Yingtao Tian ◽  
Hua Yan ◽  
Zhishui Yu

AbstractBulk metallic glasses (BMGs) are a subject of interest due to their superior specific properties such as low coefficient of friction, high strength, large ductility in bending, high elastic modulus, high microhardness, and high resistance to corrosion, oxidation, wear, and so on. However, BMGs are difficult to apply in industry due to their difficulty in manufacturing and secondary operation. In the past few decades, many efforts have been carried out to overcome the defects in the manufacturing of BMGs. It is difficult to fabricate complex structures with the whole amorphous alloy owing to the limit of crystallization and critical cooling rate. Additive manufacturing (AM), such as selective laser melting (SLM), can obtain relatively high cooling rates during the “layer-by-layer” process, which makes it possible to surpass the dimensional limitation of metallic glass. In the SLM process, the high-speed cooling of molten pool and the avoidance of secondary processing are very beneficial to the production and application of amorphous alloys. In this paper, based on the research of SLM additive manufacturing BMGs in recent years, the factors affecting crystallization and forming ability are discussed from many aspects according to different material systems. The status and challenges of SLM manufacturing BMGs including Fe-based, Zr-based, Al-based, and some composite-based BMGs will be presented. Mechanical properties and physicochemical properties were introduced. This review aims to introduce the latest developments in SLM additive manufacturing BMGs, especially on the development of process parameters, structure formation, simulation calculation, fracture mechanism, and crystallization behavior. With the traditional fabricating methods, BMGs were mainly used as a structure material. It will provide another alternative to use BMGs as a functional material by introducing SLM technology in amorphous preparation with complex geometry. This review summarizes the technical difficulty and application prospects of BMGs preparation by SLM and discusses the challenges and unresolved problems. This review identifies key issues that need to be addressed in this important field in the future. These problems are related to the application of BMGs as high-strength structural materials and new functional materials in the future.

Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


Author(s):  
Surendar Ganesan ◽  
Balasubramanian Esakki ◽  
Lung-Jieh Yang ◽  
D Rajamani ◽  
M Silambarsan ◽  
...  

The development of a flapping wing microaerial vehicle mechanism with a high strength-to-weight ratio to withstand high flapping frequency is of significant interest in aerospace applications. The traditional manufacturing methods such as injection moulding and wire-cut electrical discharge machining suffer from high cost, labour intensiveness, and time-to-market. However, the present disruptive additive manufacturing technology is considered a viable replacement for manufacturing micromechanism components. Significantly to withstand high cyclic loads, metal-based high strength-to-weight ratio flapping wing microaerial vehicle components are the need of the hour. Hence, the present work focused on the fabrication of flapping wing microaerial vehicle micromechanism components using selective laser melting with AlSi10Mg alloy. The manufactured micromechanism components attained 99% of dimensional accuracy, and the total weight of the Evans mechanism assembly is 4 g. The scanning electron microscopy analysis revealed the laser melting surface characteristics of the Al alloy. The assembled mechanism is tested in static and dynamic environments to ensure structural rigidity. Aerodynamic forces are measured using a wind tunnel setup, and 7.5 lift and 1.2 N thrust forces are experienced that will be sufficient enough to carry a payload of 1 g camera on-board for surveillance missions. The study suggested that the metal additive manufacturing technology is a prominent solution to realize the micromechanism components effortlessly compared to conventional subtractive manufacturing.


2020 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
Konda Gokuldoss Prashanth

Additive manufacturing (AM) is one of the emerging manufacturing techniques of immense engineering and scientific importance and is regarded as the technique of the future [...]


2019 ◽  
Vol 469 ◽  
pp. 647-656 ◽  
Author(s):  
Chenglong Ma ◽  
Dongdong Gu ◽  
Kaijie Lin ◽  
Donghua Dai ◽  
Mujian Xia ◽  
...  

2003 ◽  
Vol 94 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Mariana Calin ◽  
Jürgen Eckert ◽  
Ludwig Schultz

Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Sign in / Sign up

Export Citation Format

Share Document