scholarly journals A cooperative mobile robot and manipulator system (Co-MRMS) for transport and lay-up of fibre plies in modern composite material manufacture

Author(s):  
Manman Yang ◽  
Leijian Yu ◽  
Cuebong Wong ◽  
Carmelo Mineo ◽  
Erfu Yang ◽  
...  

AbstractComposite materials are widely used in industry due to their light weight and specific performance. Currently, composite manufacturing mainly relies on manual labour and individual skills, especially in transport and lay-up processes, which are time consuming and prone to errors. As part of a preliminary investigation into the feasibility of deploying autonomous robotics for composite manufacturing, this paper presents a case study that investigates a cooperative mobile robot and manipulator system (Co-MRMS) for material transport and composite lay-up, which mainly comprises a mobile robot, a fixed-base manipulator and a machine vision sub-system. In the proposed system, marker-based and Fourier transform-based machine vision approaches are used to achieve high accuracy capability in localisation and fibre orientation detection respectively. Moreover, a particle-based approach is adopted to model material deformation during manipulation within robotic simulations. As a case study, a vacuum suction-based end-effector model is developed to deal with sagging effects and to quickly evaluate different gripper designs, comprising of an array of multiple suction cups. Comprehensive simulations and physical experiments, conducted with a 6-DOF serial manipulator and a two-wheeled differential drive mobile robot, demonstrate the efficient interaction and high performance of the Co-MRMS for autonomous material transportation, material localisation, fibre orientation detection and grasping of deformable material. Additionally, the experimental results verify that the presented machine vision approach achieves high accuracy in localisation (the root mean square error is 4.04 mm) and fibre orientation detection (the root mean square error is 1.84∘) and enables dealing with uncertainties such as the shape and size of fibre plies.

2021 ◽  
Author(s):  
Manman Yang ◽  
Leijian Yu ◽  
Cuebong Wong ◽  
Carmelo Mineo ◽  
Erfu Yang ◽  
...  

Abstract Composite materials are widely used in industry due to their light weight and specific performance. Currently, composite manufacturing mainly relies on manual labour and individual skills, especially in transport and lay-up processes, which are time-consuming and prone to errors. As part of a preliminary investigation into the feasibility of deploying autonomous robotics for composite manufacturing, this paper investigates a cooperative mobile robot and manipulator system (Co-MRMS) for material transport and composite lay-up, which mainly comprises a mobile robot, a fixed-base manipulator and a machine vision sub-system. In the proposed system, marker-based and Fourier transform-based machine vision approaches are used to achieve high accuracy capability in localisation and fibre orientation detection respectively. Moreover, a particle based approach is adopted to model material deformation during manipulation within robotic simulations. As a case study, a vacuum suction based end-effector model is developed to deal with sagging effects and to quickly evaluate different gripper designs, comprising of an array of multiple suction cups. Comprehensive simulations and physical experiments, conducted with a 6-DOF serial manipulator and a two-wheeled differential drive mobile robot, demonstrate the efficient interaction and high performance of the Co-MRMS for autonomous material transportation, material localisation, fibre orientation detection and grasping of deformable material. Additionally, the experimental results verify that the presented machine vision approach achieves high accuracy in localisation (the root mean square error is 4.04 mm) and fibre orientation detection (the root mean square error is 1.84°).


2021 ◽  
pp. 1-33
Author(s):  
A. Kaba ◽  
A. E. Suzer

ABSTRACT Flight delays may be decreased in a predictable way if the Weibull wind speed parameters of a runway, which are an important aspect of safety during the take-off and landing phases of aircraft, can be determined. One aim of this work is to determine the wind profile of Hasan Polatkan Airport (HPA) as a case study. Numerical methods for Weibull parameter determination perform better when the average wind speed estimation is the main objective. In this paper, a novel objective function that minimises the root-mean-square error by employing the cumulative distribution function is proposed based on the genetic algorithm and particle swarm optimisation. The results are compared with well-known numerical methods, such as maximum-likelihood estimation, the empirical method, the graphical method and the equivalent energy method, as well as the available objective function. Various statistical tests in the literature are applied, such as R2, Root-Mean-Square Error (RMSE) and $\chi$ 2. In addition, the Mean Absolute Error (MAE) and total elapsed time calculated using the algorithms are compared. According to the results of the statistical tests, the proposed methods outperform others, achieving scores as high as 0.9789 and 0.9996 for the R2 test, as low as 0.0058 and 0.0057 for the RMSE test, 0.0036 and 0.0045 for the MAE test and 3.53 × 10−5 and 3.50 × 10−5 for the $\chi$ 2 test. In addition, the determination of the wind speed characteristics at HPA show that low wind speed characteristics and regimes throughout the year offer safer take-off and landing schedules for target aircraft. The principle aim of this paper is to help establish the correct orientation of new runways at HPA and maximise the capacity of the airport by minimising flight delays, which represent a significant impediment to air traffic flow.


2016 ◽  
Vol 23 (3) ◽  
pp. 538-543 ◽  
Author(s):  
Saeed Abdullah ◽  
Mark Matthews ◽  
Ellen Frank ◽  
Gavin Doherty ◽  
Geri Gay ◽  
...  

Objective To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones. Methods Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app. Results We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0–7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score <3.5) states with high accuracy (precision: 0.85 and recall: 0.86). Conclusions Automatic smartphone sensing is a feasible approach for inferring rhythmicity, a key marker of wellbeing for individuals with BD.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1460
Author(s):  
Jinming Liu ◽  
Changhao Zeng ◽  
Na Wang ◽  
Jianfei Shi ◽  
Bo Zhang ◽  
...  

Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.


2008 ◽  
Vol 54 (No. 1) ◽  
pp. 9-16
Author(s):  
R. Petráš ◽  
J. Mecko ◽  
V. Nociar

The results obtained in research on the quality of raw timber by means of the structure of assortments for the stands of poplar clones Robusta and I-214 are presented in the paper. Models for an estimation of the structure of basic assortments of poplar stands were constructed separately for each clone in dependence on mean diameter, quality of stems, and damage to stems in the stand. The clone Robusta has higher proportions of higher-quality assortments than the clone I-214. The accuracy of models was determined on empirical material. It was confirmed by statistical tests that the models did not have a systematic error. The relative root mean-square error for main assortments of the clone I-214 is 15–27% and Robusta 13–24%.


2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.


Sign in / Sign up

Export Citation Format

Share Document