Performance analysis of developed micro-textured cutting tool in machining aluminum alloy 7075-T6: assessment of tool wear and surface roughness

Author(s):  
Seyed Hasan Musavi ◽  
Majid Sepehrikia ◽  
Behnam Davoodi ◽  
Seyed Ali Niknam

Minimum quantity lubrication (MQL) is an eco-friendly method, where a small amount of fluid was sprayed to cutting edge in mist form with the aid of the air. The foregoing studies revealed that inappropriate machining parameters without the assistance of the cutting fluid methods became a major challenge in milling aluminum alloy 7075-T6. The paper presents the findings of the experimental work to assess the effect of machining parameters towards cutting tool life and machined surface roughness in milling aluminum alloy 7075-T6 at high cutting speed under MQL condition. An eight-run experiment was designed according to full factorial design based upon two levels of cutting speed (500 m/min, 600 m/min), feed rate (0.12 mm/tooth, 0.15 mm/tooth), and axial depth of cut (1.40 mm, 1.70 mm) and then analyzed employed ANOVA to determine the significant machining parameters. The cutting tool life and machined surface roughness were assigned by the rejection criterion of tool flank wear in the milling operation. The optical microscope and portable surface roughness tester were applied to analyze tool wear and average surface roughness value. Cutting speed and feed rate were significantly contributing to the tool life and surface roughness. The longest tool lifespan of 20.14 minutes and lowest surface roughness value of 0.569 µm were obtained at a speed of 500 and 600 m/min, respectively, with a low combination of the rest of parameter which are 0.12 mm/tooth and 1.40 mm.


Author(s):  
Shao-Hsien Chen ◽  
Chih-Hung Hsu

AbstractThe nickel alloy has good mechanical strength and corrosion resistance at high temperature; it is extensively used in aerospace and biomedical and energy industries, as well as alloy designs of different chemical compositions to achieve different mechanical properties. However, for high mechanical strength, low thermal conductivity, and surface hardening property, the nickel alloy has worse cutting tool life and machining efficiency than general materials. Therefore, how to select the optimum machining parameters will influence the workpiece quality, cost, and machining time. This research will be using a new experimental design methodology to the cutting parameter planning for nickel-based alloy cutting test, and used the uniform design methodology to cutting test to reduce the number of experiments. Three independent variable parameters are set up, including cutting speed, feed rate, and cutting depth, and four dependent variable parameters are set up, including cutting tool wear, surface roughness, machining time, and cutting force. A nickel alloy turning parameter model is built by using regression analysis to further predict the I/O relationship among various combinations of variables. The errors between actual values and prediction values are validated. When the cutting tool wear (VB) is 2.72~6.18%, the surface roughness (Ra) is 4.10~7.72%, the machining time (T) is 3.75~8.82%, and the cutting force (N) is 1.54~7.42%; the errors of various dependent variables are approximately less than 10%, so a high precision estimation model is obtained through a few experiments of uniform design method.


2020 ◽  
Author(s):  
Ivan Sunit Rout ◽  
P. Pal Pandian ◽  
Manish Mathew ◽  
Kevin Lobo Ivan ◽  
Shomyajit Misra

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2019 ◽  
Vol 290 ◽  
pp. 02010
Author(s):  
Alina Bianca Pop ◽  
Aurel Mihail Țîțu

This research aims to carry out an elaborate experiment by witch resulting in relevant conclusions that have practical applicability in the aeronautical industry. The surface roughness measured transversely and longitudinally on the feed motion direction of the cutting tool constitutes the dedicated objective function on which the study was conducted in this case. The end milling was chosen of an aluminum alloy used explicitly in the aeronautical industry. The actual experiments were carried out in the only aeronautical industry in Romania carrying out these types of machining and were made according to the methodology with rigorous experimental planning of the research. The experimental plan conceived after which the practical experiments were conducted led to applied research already put into practice within the above-mentioned industrial organization.


Author(s):  
Xiaolan Han ◽  
Zhanfeng Liu ◽  
Yazhou Feng

In the deep-hole boring process on pure niobium tube, there exist some problems including serious tool wear, tough chips, and poor surface quality. In order to bore high-quality deep holes on rolled niobium tube, the cutting tool structure and boring process parameters suitable for machining rolled niobium tube were designed and two experimental schemes were proposed. The results showed that the geometric parameters of the cutting tool and process parameters have important influences on the tool wear, chip morphologies, hole-axis deflection, and hole surface roughness. By adjusting the geometric parameters of the cutting tool and boring process parameters, reasonable geometric parameters of the cutting tool and boring process parameters were obtained.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2006 ◽  
Vol 39 (13) ◽  
pp. 408-413 ◽  
Author(s):  
José Vcte AbellánNebot ◽  
Rubén Morales-Menéndez ◽  
Antonio J. Vallejo Guevara ◽  
A. Ciro Rodríguez

2020 ◽  
Vol 21 (2) ◽  
pp. 177-185
Author(s):  
Natasha A. Raof ◽  
Nur Sofwati Daud @Ab Aziz ◽  
Abdul Rahman A. Ghani ◽  
Aishah Najiah Dahnel ◽  
Suhaily Mokhtar ◽  
...  

 Recently, almost 70% of a commercial jetliner’s airframe is made of aluminium alloys. It is predicted that the application of aluminium alloy is to increase up to 65% by the year 2025. They are typically used because of their high strength to weight ratio. However, there are some drawbacks during machining aluminium alloy such as the adhesion wear and built-up edge (BUE) formation that can shorten tool life. As the tool wears, the machining performance, surface roughness, and cutting tool life are affected significantly. A lot of studies were conducted in order to minimize this critical issue. This project presents a study of the cutting tool performance of an uncoated carbide tool in dry turning operation on Al 7075-T651, in which the tool wear rate, volume of material removed, wear mechanism, and surface roughness were investigated. The machining tests were conducted on a CNC lathe machine to obtain the tool wear and surface roughness of the machined work piece. The average flank wear was measured using a digital microscope, whereas the wear mechanism was observed using a Scanning Electron Microscope (SEM). The average surface roughness (Ra) was measured using a surface roughness tester. The cutting time for this experiment was fixed at 40 minutes and all the results were analysed within this time range to evaluate the tool performance in the turning of Al 7075-T651. The results revealed that the tool performs better at low cutting speed, 250 m/min, by reducing the tool wear rate by 33%. The cutting speed of 250 m/min also contributed to 71% higher volume of material removed during the machining tests. The dominant type of wear found was flank wear, while the main principal of wear mechanism is adhesion. At higher cutting speed, the surface roughness was improved. Based on the results, it can be concluded that high cutting tool performance is achieved when low tool wear growth rate, high volume of material removal, and low surface roughness during turning operation are obtained. ABSTRAK: Kebelakangan ini, hampir 70% kerangka pesawat udara komersil diperbuat daripada aloi aluminium. Penggunaan aloi aluminum ini dijangka meningkat sehingga 65% pada tahun 2025. Ia biasa digunakan kerana nisbah kekuatan kepada berat yang tinggi. Walau bagaimanapun, terdapat beberapa kekurangan semasa pemesinan aloi aluminum ini iaitu pemakaian pelekat dan pembentukan binaan tepi (BUE) yang mengurangkan jangka hayat mata alat. Apabila mata alat menjadi haus, prestasi mesin, kekasaran permukaan, dan jangka hayat mata alat pemotong terjejas dengan ketara. Banyak kajian telah dijalankan bagi mengurangkan isu kritikal ini. Projek ini mengkaji prestasi mata alat pemotong karbida tidak bersalut dalam operasi mesin larik kering pada Al 7075-T651, di mana kadar haus mata alat, kuantiti bahan yang dibuang, mekanisme haus dan kekasaran permukaan telah diselidiki. Ujian pemesinan dijalankan pada mesin CNC mesin larik bagi mendapatkan kadar haus mata alat dan kekasaran permukaan material yang dimesin. Purata haus pengapit mata alat diukur dengan menggunakan mikroskop digital, manakala mekanisme haus dipantau menggunakan Mikroskop Elektronik Pengimbas (SEM). Purata kekasaran permukaan (Ra) diukur menggunakan alat penguji kekasaran permukaan. Tempoh masa pemotongan bagi eksperimen ini telah ditetapkan pada 40 minit dan semua keputusan telah dianalisa dalam tempoh masa ini bagi menilai prestasi mata alat dalam melarik Al 7075-T651. Hasil menunjukkan prestasi mata alat lebih baik pada kelajuan pemotongan rendah, 250 m/min dengan mengurangkan kadar haus mata alat sehingga 33%. Kelajuan pemotongan 250 m/min juga menyumbang kepada 71% peningkatan ke atas jumlah bahan yang dibuang semasa ujian pemesinan. Jenis haus yang dominan telah ditemui pada pengapit mata alat, manakala mekanisme haus yang utama adalah lekatan. Pada kelajuan pemotongan yang tinggi, kekasaran permukaan didapati lebih baik. Berdasarkan keputusan, dapat disimpulkan bahawa prestasi mata alat pemotong yang bagus dapat dicapai apabila kadar haus mata alat adalah rendah, jumlah penyingkiran bahan yang tinggi dan kekasaran permukaan yang rendah semasa operasi pelarikan dijalankan. ABSTRAK: Kebelakangan ini, hampir 70% kerangka pesawat udara komersil diperbuat daripada aloi aluminium. Penggunaan aloi aluminum ini dijangka meningkat sehingga 65% pada tahun 2025. Ia biasa digunakan kerana nisbah kekuatan kepada berat yang tinggi. Walau bagaimanapun, terdapat beberapa kekurangan semasa pemesinan aloi aluminum ini iaitu pemakaian pelekat dan pembentukan binaan tepi (BUE) yang mengurangkan jangka hayat mata alat. Apabila mata alat menjadi haus, prestasi mesin, kekasaran permukaan, dan jangka hayat mata alat pemotong terjejas dengan ketara. Banyak kajian telah dijalankan bagi mengurangkan isu kritikal ini. Projek ini mengkaji prestasi mata alat pemotong karbida tidak bersalut dalam operasi mesin larik kering pada Al 7075-T651, di mana kadar haus mata alat, kuantiti bahan yang dibuang, mekanisme haus dan kekasaran permukaan telah diselidiki. Ujian pemesinan dijalankan pada mesin CNC mesin larik bagi mendapatkan kadar haus mata alat dan kekasaran permukaan material yang dimesin. Purata haus pengapit mata alat diukur dengan menggunakan mikroskop digital, manakala mekanisme haus dipantau menggunakan Mikroskop Elektronik Pengimbas (SEM). Purata kekasaran permukaan (Ra) diukur menggunakan alat penguji kekasaran permukaan. Tempoh masa pemotongan bagi eksperimen ini telah ditetapkan pada 40 minit dan semua keputusan telah dianalisa dalam tempoh masa ini bagi menilai prestasi mata alat dalam melarik Al 7075-T651. Hasil menunjukkan prestasi mata alat lebih baik pada kelajuan pemotongan rendah, 250 m/min dengan mengurangkan kadar haus mata alat sehingga 33%. Kelajuan pemotongan 250 m/min juga menyumbang kepada 71% peningkatan ke atas jumlah bahan yang dibuang semasa ujian pemesinan. Jenis haus yang dominan telah ditemui pada pengapit mata alat, manakala mekanisme haus yang utama adalah lekatan. Pada kelajuan pemotongan yang tinggi, kekasaran permukaan didapati lebih baik. Berdasarkan keputusan, dapat disimpulkan bahawa prestasi mata alat pemotong yang bagus dapat dicapai apabila kadar haus mata alat adalah rendah, jumlah penyingkiran bahan yang tinggi dan kekasaran permukaan yang rendah semasa operasi pelarikan dijalankan.


Sign in / Sign up

Export Citation Format

Share Document