Rhodanobacter ginsengiterrae sp. nov., an antagonistic bacterium against root rot fungal pathogen Fusarium solani, isolated from ginseng rhizospheric soil

2018 ◽  
Vol 200 (10) ◽  
pp. 1457-1463 ◽  
Author(s):  
Yue Huo ◽  
Jong-Pyo Kang ◽  
Jin-Kyu Park ◽  
Jinfeng Li ◽  
Ling Chen ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


1977 ◽  
Vol 89 (1) ◽  
pp. 235-238 ◽  
Author(s):  
P. E. Russell ◽  
A. E. A. Mussa

SummaryTwo systemic fungicides, benomyl and thiabendazole, were more active than the non-systemic fungicide Drazoxolon in inhibiting fungal growth in vitro. A similar pattern was obtained in glasshouse trials with benomyl and thiabendazole giving adequate protection at low concentrations while Drazoxolon was ineffective unless applied at 50% the commercial product concentration. A field trial using thiabendazole, Drazoxolon and a mixture of benomyl and thiram confirmed the glasshouse results.Some phytotoxicity was noticed with high concentrations of both benomyl and thiabendazole, but satisfactory disease control was achieved using fungicide concentrations which did not induce phytotoxicity.


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1197-1200 ◽  
Author(s):  
V. N. Bilgi ◽  
C. A. Bradley ◽  
S. D. Khot ◽  
K. F. Grafton ◽  
J. B. Rasmussen

Fusarium root rot of dry bean (Phaseolus vulgaris), caused by Fusarium solani f. sp. phaseoli, is a major yield-limiting disease in North Dakota and Minnesota. Although a few sources of partial resistance are available, most commercial cultivars grown in this region are susceptible, especially in the red kidney bean market class. This study evaluated three methods of screening for resistance to Fusarium root rot. A sand-cornmeal inoculum layer method, spore suspension method, and paper towel method were used to evaluate 11 dry bean genotypes for resistance to Fusarium root rot under growth-chamber conditions. These same genotypes were also evaluated in field trials at Fargo, ND, and Park Rapids and Perham, MN, in 2005. In all trials, the small red genotype VAX 3 was found to have a consistently high level of resistance to Fusarium root rot and could be used as a source of resistance by dry bean breeders. Correlation analyses between field and growth-chamber root rot ratings indicated that all three growth-chamber methods had significantly (P ≤ 0.05) positive correlations with field results from Perham and Fargo, which suggests that all three methods could be used to screen germplasm efficiently for resistance to Fusarium root rot.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1784 ◽  
Author(s):  
M. P. Melo ◽  
J. E. A. Beserra ◽  
K. S. Matos ◽  
C. S. Lima ◽  
O. L. Pereira

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Sign in / Sign up

Export Citation Format

Share Document