Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics

2020 ◽  
Vol 202 (6) ◽  
pp. 1269-1274 ◽  
Author(s):  
Hitesh Tikariha ◽  
Hemant J. Purohit
2018 ◽  
Author(s):  
Diego Alzate-Sanchez ◽  
Yuhan Ling ◽  
Chenjun Li ◽  
Benjamin Frank ◽  
Reiner Bleher ◽  
...  

This manuscript describes cyclodextrin polymers formed as a thin coating on microcrystalline cellulose. The resulting polymer/cellulose composite shows promising performance for removing organic pollutants from water and can be packed into columns for continuous-flow experiments. The polymer/cellulose composite also shows excellent resistance to aerobic and anaerobic biodegradation.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 327-334 ◽  
Author(s):  
David L. Freedman ◽  
Bryan M. Caenepeel ◽  
Byung J. Kim

Treatment of wastewater containing nitrocellulose (NC) fines is a significant hazardous waste problem currently facing manufacturers of energetic compounds. Previous studies have ruled out the use of biological treatment, since NC has appeared to be resistant to aerobic and anaerobic biodegradation. The objective of this study was to examine NC biotransformation in a mixed methanogenic enrichment culture. A modified cold-acid digestion technique was used to measure the percentage of oxidized nitrogen (N) remaining on the NC. After 11 days of incubation in cultures amended with NC (10 g/L) and methanol (9.9 mM), the % N (w/w) on the NC decreased from 13.3% to 10.1%. The presence of NC also caused a 16% reduction in methane output. Assuming the nitrate ester on NC was reduced to N2, the decrease in CH4 represented almost exactly the amount of reducing equivalents needed for the observed decrease in oxidized N. An increase in the heat of combustion of the transformed NC correlated with the decrease in % N. There was no statistically significant decrease in % N when only NC was added to the culture, or in controls that contained only the sulfide-reduced basal medium. The biotransformed NC has a % N comparable to nonexplosive nitrated celluloses, suggesting that anaerobic treatment may be a technically feasible process for rendering NC nonhazardous.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zala Schmautz ◽  
Carlos A. Espinal ◽  
Andrea M. Bohny ◽  
Fabio Rezzonico ◽  
Ranka Junge ◽  
...  

Abstract Background An aquaponic system couples cultivation of plants and fish in the same aqueous medium. The system consists of interconnected compartments for fish rearing and plant production, as well as for water filtration, with all compartments hosting diverse microbial communities, which interact within the system. Due to the design, function and operation mode of the individual compartments, each of them exhibits unique biotic and abiotic conditions. Elucidating how these conditions shape microbial communities is useful in understanding how these compartments may affect the quality of the water, in which plants and fish are cultured. Results We investigated the possible relationships between microbial communities from biofilms and water quality parameters in different compartments of the aquaponic system. Biofilm samples were analyzed by total community profiling for bacterial and archaeal communities. The results implied that the oxygen levels could largely explain the main differences in abiotic parameters and microbial communities in each compartment of the system. Aerobic system compartments are highly biodiverse and work mostly as a nitrifying biofilter, whereas biofilms in the anaerobic compartments contain a less diverse community. Finally, the part of the system connecting the aerobic and anaerobic processes showed common conditions where both aerobic and anaerobic processes were observed. Conclusion Different predicted microbial activities for each compartment were found to be supported by the abiotic parameters, of which the oxygen saturation, total organic carbon and total nitrogen differentiated clearly between samples from the main aerobic loop and the anaerobic compartments. The latter was also confirmed using microbial community profile analysis.


2020 ◽  
Author(s):  
Saeed Keshani Langroodi ◽  
Yemin Lan ◽  
Ben Stenuit ◽  
Gail Rosen ◽  
Joseph B Hughes ◽  
...  

Environmental contamination by 2,4,6-trinitrotoluene (TNT), historically the most widely used secondary explosive, is a long-standing problem in former military conflict areas and at manufacturing and decommissioning plants. In field test plots at a former explosives manufacturing site, removal of TNT and dinitrotoluenes (DNTs) was observed following periods of tillage. Since tilling of soils has previously been shown to alter the microbial community, this study was aimed at understanding how the microbial community is altered in soils with historical contamination of nitro explosives from the former Barksdale TNT plant. Samples of untilled pristine soils, untilled TNT-contaminated soils and tilled TNT-contaminated soils were subjected to targeted amplicon sequencing of 16S ribosomal RNA genes in order to compare the structure of their bacterial communities. In addition, metagenomic data generated from the TNT tilled soil was used to understand the potential functions of the bacterial community relevant to nitroaromatic degradation. While the biodiversity dropped and the Burkholderiales order became dominant in both tilled and untilled soil regardless of tillage, the bacterial community composition at finer taxonomic levels revealed a greater difference between the two treatments. Functional analysis of metagenome assembled genome (MAG) bins through systematic review of commonly proposed DNT and TNT biotransformation pathways suggested that both aerobic and anaerobic degradation pathways were present. A proposed pathway that considers both aerobic and anaerobic steps in the degradation of TNT in the scenario of the tilled contaminated soils is presented.


2019 ◽  
Vol 9 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Aida Gil ◽  
Jose A. Siles ◽  
M. Carmen Gutiérrez ◽  
M. Ángeles Martín

1995 ◽  
Vol 31 (12) ◽  
pp. 3309-3327 ◽  
Author(s):  
Hedeff I. Essaid ◽  
Barbara A. Bekins ◽  
E. Michael Godsy ◽  
Ean Warren ◽  
Mary Jo Baedecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document